4

Система охлаждения 2105: -2104 -2105 (-2105 1979-2010)

Содержание

Ремонт ВАЗ 2105 (Жигули) : Система охлаждения

  1. Руководства по ремонту
  2. Руководство по ремонту ВАЗ 2105 (Жигули) 1980-1992 г.в.
  3. Система охлаждения

Устройство системы охлаждения

1 – трубка отвода жидкости от радиатора отопителя;
2 – патрубок отвода горячей жидкости из головки цилиндров в радиатор отопителя;
3 – перепускной шланг термостата;
4 – выпускной патрубок рубашки охлаждения;
5 – подводящий шланг радиатора;
6 – расширительный бачок;
7 – рубашка охлаждения;
8 – пробка радиатора;
9 – трубка радиатора;
10 – кожух вентилятора;
11 – вентилятор;
12 – шкив;
13 – отводящий шланг радиатора;
14 – ремень вентилятора;
15 – насос охлаждающей жидкости;
16 – шланг подачи охлаждающей жидкости в насос;
17 – термостат

Система охлаждения – жидкостная, закрытого типа, с принудительной циркуляцией жидкости, с расширительным бачком.

Насос охлаждающей жидкости центробежного типа, приводится в действие от шкива коленчатого вала клиновидным ремнем 14.

Вентилятор 11 имеет четырехлопастную крыльчатку, которая крепится болтами к ступице 5 (см. рис. Продольный разрез насоса охлаждающей жидкости) шкива 8, приводится в действие от ремня привода насоса.

Термостат с твердым термочувствительным наполнителем имеет основной 9 (см. рис. Термостат) и перепускной 2 клапаны. Начало открытия основного клапана при температуре охлаждающей жидкости 77–86° С, ход основного клапана не менее 6 мм.

Радиатор – вертикальный, трубчато-пластинчатый, с двумя рядами трубок и стальными лужеными пластинами. В пробке 8 заливной горловины имеются впускной и выпускной клапаны.

Скачать информацию со страницы
↓ Комментарии ↓

 



1. Эксплуатация автомобиля
1.0 Эксплуатация автомобиля 1.1. Пуск двигателя 1.2 Управление коробкой передач 1.3 Движение автомобиля 1.4 Торможение и стоянка 1.5 Эксплуатация нового автомобиля 1.6 Корректировка угла опережения зажигания 1.7 Меры предосторожности при эксплуатации автомобиля 1.8 Уход за кузовом 1.9 Хранение автомобиля

2. Техническое обслуживание автомобиля
2.0 Техническое обслуживание автомобиля 2.1 Операции технического обслуживания

3. Общие данные
3.0 Общие данные 3.1 Техническая характеристика автомобилей 3.2. Органы управления 3.3. Управление вентиляцией и отоплением салона 3.4 Моменты затяжки резьбовых соединений 3.5 Инструмент для ремонта и технического обслуживания 3.6 Применяемые горюче-смазочные материалы и эксплуатационные жидкости 3.7 Основные данные для регулировок и контроля

4. Двигатель


4.0 Двигатель 4.1 Возможные неисправности, их причины и методы устранения 4.2 Снятие и установка двигателя 4.3 Разборка двигателя 4.4 Сборка двигателя 4.5 Стендовые испытания двигателя 4.6 Проверка двигателя на автомобиле 4.7. Блок цилиндров 4.8. Поршни и шатуны 4.9. Коленчатый вал и маховик 4.10. Головка цилиндров и клапанный механизм 4.11. Распределительный вал и его привод 4.12. Система охлаждения 4.13. Система смазки 4.14. Система питания 4.15. Карбюратор 2105-1107010 4.16. Карбюратор 21051-1107010

5. Трансмиссия
5.0 Трансмиссия 5.1. Сцепление 5.2. Коробка передач 5.3. Карданная передача 5.4. Задний мост

6. Ходовая часть
6.0 Ходовая часть 6.1. Передняя подвеска 6.2. Задняя подвеска 6.3. Амортизаторы

7. Рулевое управление
7.0 Рулевое управление 7.1 Возможные неисправности, их причины и методы устранения 7.2. Осмотр, проверка и регулировка рулевого правления 7.3. Рулевой механизм 7.4 Тяги и шаровые шарниры рулевого механизма 7.5 Кронштейн маятникового рычага

8. Тормоза
8.0 Тормоза 8.1 Возможные неисправности, их причины и методы устранения 8.2. Проверка и регулировка тормозов 8.3 Кронштейн педалей сцепления и тормоза 8.4 Вакуумный усилитель 8.5. Главный цилиндр 8.6. Передние тормоза 8.7. Задние тормоза 8.8. Регулятор давления задних тормозов 8.9. Стояночный тормоз

9. Электрооборудование
9.0 Электрооборудование 9.1 Возможные неисправности, их причины и методы устранения 9.2 Цепи, защищаемые предохранителями 9.3. Аккумуляторная батарея 9.4. Генератор 9.5. Стартер 9.6. Система зажигания 9.7. Освещение и световая сигнализация 9.8. Звуковые сигналы 9.9. Очиститель ветрового стекла 9.11. Электродвигатель вентилятора отопителя 9.12. Контрольные приборы 9.13. Система управления пневмоклапаном карбюратора

10. Кузов
10.0 Кузов 10.1 Возможные неисправности, их причины и методы устранения 10.2. Двери 10.3. Капот, крышка багажника, бамперы 10.4. Остекление кузова, омыватели ветрового стекла и стекол фар 10.5 Панель приборов 10.6. Сиденья 10.7. Отопитель 10.8. Ремонт каркаса кузова 10.9. Лакокрасочные покрытия 10.10. Противокоррозионная защита кузова

11. Модификации автомобиля
11.0 Модификации автомобиля 11.1. Особенности ремонта автомобилей ВАЗ-21051 и ВАЗ-21053 11.2. Особенности ремонта автомобилей ВАЗ-2104 и ВАЗ-21043 11.3 Автомобили ВАЗ-21044 с системой впрыска топлива 11.4. Устройство системы центрального впрыска топлива

12. Электросхемы
12.0 Электросхемы 12.1 Интерактивная электросхема автомобиля ВАЗ-2105 12.2 Схема электрооборудования автомобиля ВАЗ-2104 12.3 Схема электрических соединений системы впрыска 12.4 Схема соединения комбинации приборов 12.5 Схема соединений контрольных ламп тормозной системы 12.6 Схема включения очистителей и омывателей фар 12.7 Схема включения электродвигателя вентилятора отопителя 12.8 Схема включения очистителя и омывателя ветрового стекла 12.9 Схема включения указателей поворота и аварийной сигнализации

ВАЗ 2105 | Системы охлаждения, отопления

Системы охлаждения, отопления

Общая информация и меры предосторожности

Система охлаждения двигателя

Схема циркуляции охлаждающей жидкости на примере 6-цилиндрового двигателя


Схема организации отопления/вентиляции салона

Сервопривод управления функционированием режимных заслонок

Все модели рассматриваемых в настоящем Руководстве автомобилей оборудованы работающей при избыточном давлении системой охлаждения двигателя с термостатическим управлением циркуляцией рабочей жидкости. Водяной насос роторного типа закреплен на левом полублоке двигателя (модели 2.0 и 2.5 л), либо помещен в кожух, образуемый углублениями в задней крышке привода ГРМ и верхней секции поддона картера (модели 3.0 л) и обеспечивает прокачку охлаждающей жидкости сквозь охладительный тракт силового агрегата (см. Раздел Водяной насос — общая информация). Привод водяного насоса осуществляется от газораспределительного ремня/цепи. Поток жидкости омывает районы расположения каждого из цилиндров в блоке, проложенные в литье полублоков и головок цилиндров охладительные каналы обеспечивают интенсивное охлаждение впускных и выпускных портов, районов установки свечей зажигания и направляющих втулок выпускных клапанов. Система охлаждения с момента запуска двигателя проходит через три режима функционирования: на первом этапе, пока тем пература охлаждающей жидкости не поднялась выше 76 °С, термостат остается закрытым и жидкость циркулирует по малому кругу, из рабочего контура которого исключен радиатор, что обеспечивает быстрый разогрев двигателя; при температуре 76 ÷ 80 °С термостат открывается и в контур циркуляции включается радиатор; по достижении температурой охлаждающей жидкости значения 95°С (4-цилиндровые двигатели)/91°С (6-цилиндровые двигатели) ECM, ориентируясь на показания датчика температуры охлаждающей жидкости (ECT), выдает команду на активацию вентилятора(ов) системы охлаждения, нагнетаемый которым(и) дополнительный воздушный поток в значительной мере повышает эффективность функционирования теплообменника радиатора.

Воскозаполненный термостат встроен во впускной патрубок водяного насоса и контролирует рабочую температуру двигателя в процессе его разогрева. В первые минуты после запуска холодного двигателя термостат остается закрытым, предотвращая тем самым циркуляцию охлаждающей жидкости через радиатор. По мере приближения температуры двигателя к нормальному рабочему значению, клапан термостата постепенно открывается, подключая к контуру охлаждения радиатор, обеспечивающий максимальную интенсивность теплоотвода от рабочего тела (охлаждающей жидкости).


Система охлаждения имеет герметичную конструкцию и плотно закрыта крышкой радиатора, способной выдерживать избыточное давление, что обеспечивает повышение точки кипения охлаждающей жидкости и, соответственно, эффективности теплоотвода через радиатор. При превышении внутренним давлением в системе некоторого определенного значения, подпружиненная тарелка вмонтированного в крышку радиатора предохранительного клапана приподнимается над своим седлом, обеспечивая перетекание избытка охлаждающей жидкости по соединительной (переливной) трубке в расширительный бачок. По мере остывания системы жидкость автоматически возвращается из бачка в радиатор.

Доливание охлаждающей жидкости в систему производится через горловину расширительного бачка, который одновременно выступает также в роли ресивера, аккумулирующего в себе вытесняемый из радиатора избыток расширяющейся при разогреве жидкости.

Ввиду перечисленных особенностей конструкции, такая система охлаждения получила название замкнутой, поскольку в ней исключены какие-либо функциональные потери рабочего тела.

Системы отопления/вентиляции/кондиционирования воздуха (HVAC)

Система отопления/вентиляции салона

Основными компонентами системы отопления/вентиляции салона являются помещенные в закрепленный под панелью приборов коробчатый кожух отопителя электрический вентилятор и теплообменник, а также система воздуховодов раздачи воздушного потока. Разогретая в двигателе охлаждающая жидкость циркулирует через теплообменник отопителя, отдавая свое тепло заполняющему кожух воздуху, при включении вентилятора крыльчатка последнего начинает прогонять подаваемый в салон воздух через теплообменник, обеспечивая его интенсивный разогрев. Активация вентилятора возможна только при включенном зажигании, выбор скоростного режима вентилятора обеспечивается соединенной с управляющим переключателем специальной резистивной сборкой приводного электромотора.


Теплообменник посредством резиновых шлангов соединен с системой охлаждения двигателя. Сборка управления функционированием отопителя/кондиционера воздуха вмонтирована в среднюю часть панели приборов автомобиля и посредством изменения положений соответствующих заслонок позволяет осуществлять регулировку температуры и выбор направления раздачи воздушного потока. Электромотор привода впускной заслонки помещается в верхней части впускной секции сборки отопителя и, в зависимости от положения переключателя режимов циркуляции обеспечивает подачу в салон свежего воздуха, либо его циркуляцию в объеме салона автомобиля. Сервопривод управления режимными заслонками закреплен с левой стороны сборки отопителя и по сигналам, поступающим от управляющих переключателей, обеспечивает требуемое перемещение соответствующих заслонок.

В качестве дополнительной комплектации в контур системы отопления/вентиляции может устанавливаться салонный фильтр, обеспечивающий очистку подаваемого в салон воздуха от пыли. Фильтр помещается непосредственно за вентилятором, впереди модуля испарителя.

1 — Фильтрующие элементы
2 — Испаритель К/В


Система кондиционирования воздуха (К/В)

В состав системы кондиционирования входят установленный впереди радиатора конденсатор, расположенный рядом с теплообменником отопителя испаритель, закрепленный на блоке двигателя компрессор, и фильтрующий ресивер-осушитель (аккумулятор), оборудованный редукционным клапаном высокого давления. Все компоненты соединены между собой рефрижераторными линиями. Циркулирующий в тракте системы кондиционирования хладагент выходит из компрессора, прогоняется через конденсатор, ресивер-осушитель и испаритель, затем вновь возвращается в компрессор, расход поступающего в испаритель хладагента регулируется встроенным в испаритель расширительным клапаном.


Температура испарителя постоянно поддерживается на некотором заданном уровне за счет управления активацией компрессора. Когда температура испарителя опускается ниже заданного значения, специальное термочувствительное исполнительное устройство производит остановку компрессора, при повышении температуры испарителя то же устройство вновь запускает компрессор.

Для защиты рабочего контура К/В от чрезмерного возрастания или падения давления предусмотрен специальный датчик-выключатель, по сигналу которого также производится блокировка компрессора.

Вентилятор прогоняет поступающий в салон воздух сквозь теплообменник испарителя, работающий в режиме, обратном режиму функционирования радиатора. Прокачиваемый через теплообменник хладагент закипает и, испаряясь, отбирает у воздуха избыток тепла. Температура внутри салона при этом снижается до требуемого комфортного значения (по выбору оператора). Компрессор поддерживает циркуляцию хладагента в системе, прокачивая разогретую жидкость через конденсатор, где она охлаждается и поступает обратно в испаритель.

Элементы управления функционированием системы кондиционирования входят в состав той же сборки, с которой осуществляется выбор рабочих параметров систем отопления и вентиляции.

Автоматическая система кондиционирования воздуха (климат-контроль)

На некоторых моделях организовано централизованное управление функционированием систем отопления, вентиляции и кондиционирования воздухом (система климат-контроля). При такой комплектации климатические условия в салоне автомобиля поддерживаются автоматически в соответствии с введенными пользователем установками. Сборка управления HVAC помещается в центральной части панели приборов автомобиля на стандартном месте, где обычно помещается панель управления систем отопления/вентиляции и кондиционирования моделей стандартной комплектации.

Поддержание заданной температуры осуществляется за счет организации в системе управления климат-контроля обратной связи с ECM через дополнительные информационные датчики. К числу таких датчиков относятся работающие по принципу термистора датчики температуры воздуха внутри и снаружи автомобиля и датчик солнечного излучения.


Для подачи воздуха на чувствительный элемент датчика температуры воздуха в салоне автомобиля используется создаваемое воздушным потоком разрежение, вследствие чего датчик функционирует лишь при включенном вентиляторе отопителя.

Датчик температуры наружного воздуха закреплен на стойке радиатора позади декоративной решетки последнего, что обеспечивает хороший его обдув набегающим потоком. С целью повышения тепловой мощности корпус датчика изготавливается из пластмассы, что снижает быстроту реагирования термистора на изменение температуры, таким образом, датчик фиксирует лишь среднюю температуру окружающей среды и не способен регистрировать резкие ее изменения.

Основу конструкции датчика солнечного излучения составляет фотодиод, выдающий на ECM электрический, пропорциональный интенсивности солнечного излучения.

На основании анализа непрерывно поступающих от информационных датчиков данных ECM управляет функционированием встроенного в смесительный демпфер сервомотором, посредством тяги связанным с демпферным клапаном. Входящий в состав сервомотора потенциометр информирует ECM о текущем положении клапана, замыкая тем самым контур обратной связи по температуре подаваемого в салон воздуха.

Аналогичным же образом организовано управление демпферными клапанами выбора направления раздачи воздушного потока, а также клапаном переключения режимов циркуляции воздуха.

Базовое напряжение мощного транзистора приводного электромотора вентилятора К/В изменяется по команде ECM, что позволяет ступенчато регулировать скорость вращения крыльчатки. Замечание: Для защиты цепи от перегрузки в нее включен специальный термопредохранитель, срабатывающий при температуре 119°С и обеспечивающий отсечку питания от вентилятора.

Температура испарителя контролируется специальным установленным на выходе сборки датчиком.

Таким образом, ECM, основываясь на анализе входящей информации, способен вычислять количество нагнетаемого в салон воздуха (ТАО), требуемое для поддержания выбранного пользователем температурного режима.

  При вводе крайних значений рабочего диапазона (18 и 32 °С) система переводится в фиксированное состояние максимальной интенсивности охлаждения/обогрева (по ТАО). В диапазоне значений от 18.5°С до 31.5°С оптимальное значение ТАО вычисляется модулем управления.


Инструкции по применению

  См. также Раздел Системы отопления, вентиляции и кондиционирования воздуха.


Модели с ручным управлением функционированием системы кондиционирования воздуха

Принцип управления функционированием систем вентиляции/отопления/кондиционирования воздуха с ручным управлением проиллюстрирован в приведенной ниже таблице. На иллюстрации представлены схемы направлений раздачи воздуха в зависимости от положения переключателя

.


Процентное соотношение расхода воздуха через соответствующие воздуховоды в различных положениях управляющего переключателя может быть оценено по приведенной на сопр. иллюстрации диаграмме.

Модели с автоматическим управлением функционированием системы кондиционирования воздуха (климат-контроль)

См. Раздел Системы отопления, вентиляции и кондиционирования воздуха.

Меры предосторожности

  Во избежание ошпаривания, ни в коем случае не снимайте крышку расширительного бачка и не отсоединяйте никакие компоненты охладительного тракта при горячем двигателе. Если возникает необходимость в снятии крышки расширительного бачка до полного остывания охлаждающей жидкости, (хотя таких ситуаций следует по возможности избегать), следует предварительно сбросить избыточное давление в системе. Оберните крышку бачка толстым слоем ветоши, затем медленно отверните до возникновения шипения. Когда указывающее на выпуск пара шипение прекратится, медленно отверните крышку до конца. Если на последней стадии отворачивания шипение не возобновится, крышка может быть снята. В процессе выполнения всей процедуры не наклоняйте лицо над горловиной бачка, для защиты рук наденьте резиновые перчатки!

Старайтесь избегать попадания антифриза на открытые участки кожи и лакокрасочное покрытие кузовных панелей. Случайные брызги следует без промедления смыть обильным количеством чистой воды. Ни в коем случае не оставляйте слитую из двигателя или свежую охлаждающую жидкость хранящимися в открытой таре. Следы пролива сразу же собирайте ветошью. Помните, что сладковатый запах антифриза способен привлечь внимание детей и животных. Попадание даже незначительного количества охлаждающей жидкости в пищеварительный тракт живого организму чревато самыми серьезными последствиями, вплоть до летального исхода!

21051303010 Патрубок ВАЗ-2105 радиатора (алюминиевый) силикон комплект 4шт. Profi CS-20 — 2105-1303010 06898

21051303010 Патрубок ВАЗ-2105 радиатора (алюминиевый) силикон комплект 4шт. Profi CS-20 — 2105-1303010 06898 — фото, цена, описание, применимость. Купить в интернет-магазине AvtoAll.Ru Распечатать

4

1

Применяется: ВАЗ, ИЖ

Артикул: 2105-1303010еще, артикулы доп.: 06898скрыть

Код для заказа: 506439

Добавлено пользователем

4 090 ₽

В корзину

Способы оплаты: Наличные при получении VISA, MasterCard, МИР, Google Pay Долями Оплата через банк Производитель: CS-20 Получить информацию о товаре или оформить заказ вы можете по телефону 8 800 6006 966. Есть в наличии Доступно для заказа4 шт.Сейчас в 9 магазинах — >10 шт.Цены в магазинах могут отличатьсяДанные обновлены: 24.04.2022 в 22:30 Доставка на таксиДоставка курьером — 150 ₽

Сможем доставить: Послезавтра (к 26 Апреля)

Доставка курьером ПЭК — EasyWay — 150 ₽

Сможем доставить: Завтра (к 25 Апреля)

Пункты самовывоза СДЭК Пункты самовывоза Boxberry Постаматы PickPoint Магазины-салоны Связной Отделения Почты РФ Терминалы ТК ПЭК — EasyWay Самовывоз со склада интернет-магазина на Кетчерской — бесплатно

Возможен: завтра c 10:00

Самовывоз со склада интернет-магазина в Люберцах (Красная Горка) — бесплатно

Возможен: завтра c 19:00

Самовывоз со склада интернет-магазина в поселке Октябрьский — бесплатно

Возможен: завтра c 19:00

Самовывоз со склада интернет-магазина в Сабурово — бесплатно

Возможен: завтра c 19:00

Самовывоз со склада интернет-магазина на Братиславской — бесплатно

Возможен: завтра c 19:00

Самовывоз со склада интернет-магазина в Перово — бесплатно

Возможен: завтра c 19:00

Самовывоз со склада интернет-магазина в Некрасовке — бесплатно

Возможен: завтра c 19:00

Самовывоз со склада интернет-магазина в Кожухово — бесплатно

Возможен: завтра c 10:00

Самовывоз со склада интернет-магазина в Вешняках — бесплатно

Возможен: завтра c 10:00

Самовывоз со склада интернет-магазина из МКАД 6км (внутр) — бесплатно

Возможен: завтра c 10:00

Самовывоз со склада интернет-магазина из МКАД 6км (внеш) — бесплатно

Возможен: послезавтра c 12:00

Самовывоз со склада интернет-магазина на Пролетарке — бесплатно

Возможен: завтра c 10:00

Самовывоз со склада интернет-магазина на Рябиновой — бесплатно

Возможен: послезавтра c 12:00

Самовывоз со склада интернет-магазина в Подольске — бесплатно

Возможен: послезавтра c 12:00

Код для заказа 506439 Артикулы 2105-1303010, 06898 Производитель CS-20 Каталожная группа: ..Система охлаждения
Двигатель
Ширина, м: 0.18 Высота, м: 0.04 Длина, м: 0.42 Вес, кг: 0.675

Отзывы о товаре

Вопрос-ответ

Задавайте вопросы и эксперты
помогут вам найти ответ

Где применяется

Сертификаты

Обзоры

Статьи о товаре

  • «Хрустальные» ВАЗы: «Классика». Ты помнишь, как всё начиналось? 16 Апреля 2013

    Сегодня очередная статья серии ««Хрустальные ВАЗы» или типичные поломки отечественных автомобилей» посвящена «классике»: ВАЗ-2101, 2103, 2104, 2104, 2105, 2106 и 2107. Эти машины уже не один десяток лет колесят по нашим дорогам и, несмотря на все недочеты, о которых расскажем, их популярность по-прежнему высока.

  • Патрубок ВАЗ-2105 радиатора (алюминиевый) силикон комплект 4шт. Profi CS-20 Артикул: 2105-1303010, 06898 Код для заказа: 506439

    4 090 ₽

    или оформите заказ по телефону 8 800 6006 966
Наличие товара на складах и в магазинах, а также цена товара указана на 24.04.2022 22:30.

Цены и наличие товара во всех магазинах и складах обновляются 1 раз в час. При достаточном количестве товара в нужном вам магазине вы можете купить его без предзаказа.

Интернет-цена — действительна при заказе на сайте или через оператора call-центра по телефону 8 800 6006 966. При условии достаточного количества товара в момент заказа.

Цена в магазинах — розничная цена товара в торговых залах магазинов без предварительного заказа.

Срок перемещения товара с удаленного склада на склад интернет-магазина.

Представленные данные о запчастях на этой странице несут исключительно информационный характер.

21067087a420b9190fb277f5083a63c6

Добавление в корзину

Код для заказа:

Доступно для заказа:

Кратность для заказа:

Добавить

Отменить

Товар успешно добавлен в корзину

!

В вашей корзине на сумму

Закрыть

Оформить заказ

Система охлаждения ваз 21074 инжектор схема – Прокачай АВТО

Система охлаждения двигателя – жидкостная, закрытого типа с принудительной циркуляцией. На холодном двигателе жидкость циркулирует по «малому кругу». В него входят рубашки охлаждения блока и головки блока цилиндров двигателя, насос охлаждающей жидкости, термостат, а также радиатор отопителя, когда его кран открыт. При достижении температуры жидкости 80–85°С приходят в действие два клапана термостата, перекрывая малый круг и открывая жидкости путь через радиатор двигателя, который интенсивно обдувается встречным потоком воздуха при движении, а также при помощи электровентилятора.

Положение клапанов термостата при различной температуре охлаждающей жидкости

I – вход жидкостииз головки блока цилиндров;
II – выход жидкости к насосу охлаждающей жидкости;
III – вход жидкости от отводящего шланга радиатора;

1 – основной клапан,
2 – перепускной клапан.

Радиатор состоит из двух горизонтальных бачков, соединенных между собой трубками. Для лучшего теплоотвода на них напрессованы пластины. Жидкость подается в радиатор через верхний патрубок, а отводится через нижний.

В последнее время автомобили комплектуются радиаторами с пластмассовыми бачками и алюминиевой сердцевиной.

Проходя через радиатор, жидкость охлаждается, после чего снова поступает в двигатель. Изменение объема охлаждающей жидкости при ее нагреве или охлаждении компенсирует расширительный бачок. Для визуального контроля уровня охлаждающей жидкости бачок изготовлен из полупрозрачного полиэтилена.

Герметичность системы обеспечивается впускным и выпускным клапанами пробки заливной горловины радиатора. На горячем двигателе выпускной клапан поддерживает повышенное давление в системе. За счет этого повышается температура кипения жидкости. При ее остывании открывается впускной клапан, пропуская часть жидкости из расширительного бачка в радиатор и тем самым компенсируя уменьшение объема жидкости.

В пробке расширительного бачка имеется отверстие, поэтому в его внутренней полости давление всегда атмосферное.

Насос охлаждающей жидкости центробежного типа. Корпус насоса – алюминиевый, разборный, состоит из двух частей. Валик насоса вращается в двухрядном подшипнике закрытого типа, не требующем обслуживания. На передний конец вала напрессован фланец шкива привода насоса – клиновым ремнем от шкива коленчатого вала двигателя.

Не рекомендуется заливать в систему охлаждения двигателя воду. Это приводит к образованию накипи на стенках системы, коррозии деталей, ухудшению теплообмена и сокращению ресурса уплотнения насоса.

Здравствуйте, читатель блога RtiIvaz.ru. В этой статье рассмотрим, как поменять патрубки системы охлаждения на ВАЗ 21073 инжектор, с алюминиевым радиатором.

ОПИСАНИЕ ПАТРУБКОВ ВАЗ 21073

Как выглядит комплект патрубков ВАЗ 2107 с инжекторным двигателем изображено на рисунке ниже:

РИС.1. Комплект резиновых патрубков на ваз 21073 «инжектор»

  1. Отводящий патрубок,
  2. Подводящий патрубок,
  3. Муфта водяного насоса,
  4. Перепускной патрубок.

1.Отводящий патрубок – в народе называют нижний патрубок радиатора. Номер по каталогу 2105-1303010.

Нижний патрубок предназначен для соединения нижней части радиатора охлаждения с термостатом. По патрубку жидкость выводится из радиатора и подается на термостат. Он так же используется на автомобилях ваз – «классика», с карбюраторными двигателями.

2.Подводящий патрубок – в народе называют верхний патрубок радиатора. Номер по каталогу 2123-1303025. По нему охлаждающая жидкость подается в верхнюю часть радиатора системы охлаждения двигателя. Еще его можно применять в качестве отводящего патрубка на Ниву – шевроле.

3.Муфта водяного насоса – устанавливается между термостатом и помпой. Его номер по каталогу 2103 – 1803092. По нему охлаждающая жидкость подается из термостата в водяной насос. Используется он так же во всех двигателях ВАЗовской «классики». В народе его еще называют «коротыш».

4. Перепускной патрубок – соединяет верхнюю часть термостата и выпускной патрубок рубашки охлаждения двигателя. Номер по каталогу 2101 – 1303090. Его еще называют «уголок».

РАСПОЛОЖЕНИЕ ПАТРУБКОВ ВАЗ 2107

Далее мы рассмотрим, где и как располагаются все эти патрубки на примере фрагмента двигателя ВАЗ 2107:

РИС.2. Система охлаждения двигателя ваз 2107.

1.Отводящий патрубок. 2.Подводящий патрубок. 3.Муфта водяного насоса 4. Перепускной патрубок. 5. Шланг подачи горячей жидкости в радиатор отопителя. 6. Расширительный бачок. 7. Рубашка охлаждения двигателя. 8. Крышка радиатора. 9. Радиатор охлаждения двигателя. 10. Кожух вентилятора (диффузор). 11. Вентилятор охлаждения радиатора. 12. Нижняя опора радиатора. 13. Шкив водяного насоса (помпы). 14. Трубка вывода жидкости из радиатора отопителя. 15. Ремень водяного насоса. 16. Водяной насос. 17. Патрубок выпускной, рубашки охлаждения двигателя. 18. Термостат. Стрелками здесь указано направление движения охлаждающей жидкости.

ПРИЧИНЫ НЕИСПРАВНОСТИ ПАТРУБКОВ РАДИАТОРА ВАЗ 2107

Замену патрубков системы охлаждения производят тогда, когда обнаружится, что уровень охлаждающей жидкости со временем убывает. Если вы обнаружили это в своем автомобиле, то внимательно осмотрите все патрубки. Иногда бывает, что ослаблен один из хомутов, и достаточно просто подтянуть его. В некоторых случаях утечка появляется в самом радиаторе охлаждения.

Тогда придется менять его, если он у вас алюминиевый, а если медный радиатор, то положение спасает пайка радиатора. Но, поскольку у нас сегодня другая тема, то будем рассматривать тот случай, когда жидкость вытекает вследствие дефекта резиновых патрубков системы охлаждения.

Чаще всего на резине появляются трещины в местах крепления их хомутами. Это можно обнаружить при появлении подтеков. Надо в этом месте слегка изогнуть патрубок и тогда сразу станет видна эта трещина. Для примера приведу вам фото ниже:

РИС.3 Трещина на патрубке, в месте крепления хомутом.

Иногда ставят патрубки не совсем подходящие по форме и изгибам. Тогда возникают либо напряжения в материале, либо деформация. Вот в местах деформации чаще всего и образуются трещины (а то и вовсе резина обрываются) и жидкость начинает вытекать через них.

Бывает и так, что патрубки вообще лопаются, как показано на рисунке ниже:

РИС. 4. Лопнувший патрубок основного радиатора.

ЗАМЕНА ПАТРУБКОВ РАДИАТОРА ВАЗ 21073

Перед заменой патрубков ваз 21073 надо снять пробки с радиатора и расширительного бачка. Приготовим шланг подходящего диаметра и какую нибудь емкость, можно старую канистру, но не менее чем на 10 литров. В системе охлаждения ваз 2107 по паспорту залито 9 литров жидкости.

Затем находим сливной кран двигателя. Он находится в нижней части блока. Надеваем на штуцер этого крана один конец шланга. Другой конец вставляем в емкость, которую мы предусмотрительно поставили ниже уровня двигателя. Если мы ее установим где попало, то может оказаться так что, она окажется выше уровня двигателя. В таком случае жидкость системы охлаждения не будет вытекать из двигателя.

Пока жидкость вытекает, мы ключом (удобнее для этого применить торцевые головки) на 8 или на 7 мм, в зависимости от того какие хомуты применены в вашем автомобиле, ослабляем хомуты. Снимать сразу резиновые патрубки не рекомендую, поскольку жидкость еще не вся вытекла из системы охлаждения. Дождемся, когда жидкость из блока перестанет течь, затем приступим к радиатору.

Выкручиваем пробку в нижней части радиатора и тут же вставляем в отверстие шланг, чтобы избежать напрасных потерь жидкости. Пробка эта показана на следующем рисунке:

РИС.5. Расположение и вид сливной пробки основного радиатора.

Дожидаемся, когда из основного радиатора вытечет вся охлаждающая жидкость. Теперь мы можем смело приступить к демонтажу патрубков радиатора ваз 2107 с инжекторным двигателем (см.видео).

С термостата патрубки можно сразу не снимать. Обычно термостат извлекают вместе с ними, поскольку на снятом термостате их демонтировать легче. Ну вот, мы сняли все и теперь надо внимательно сравнить все новые патрубки со старыми, чтобы их длина, форма и диаметр в точности совпадали. Иначе они могут быть установлены неправильно, вследствие чего в местах изгиба могут появиться деформации.

Также если какой нибудь из них окажется коротким, то он может попросту порваться в процессе эксплуатации. Перед установкой каждого патрубка рекомендую хорошенько почистить посадочные места и смазать тонким слоем герметика.

С герметикой надо быть поаккуратнее, обычно мажут тонким слоем, и шланг надевают только через пятнадцать минут. Это надо чтобы герметик немного схватился. И я, обычно, стараюсь после установки всех шлангов, оставить все это на ночь. За это время герметик окончательно схватится, вследствие чего вероятность появления течи в месте соединения будет минимальной.

Сначала надеваем патрубки на термостат, но не затягиваем хомуты. При установке его на свое место может оказаться, что какой нибудь из них одет не совсем в том положении, в котором должен быть.

Термостат вместе с патрубками устанавливаем на свое место, все концы надеваем на свои места. Далее убедившись, что они сидят правильно, без перекосов и деформаций, можно уже окончательно затягивать хомуты. Таким же образом устанавливаем все остальные патрубки, затягиваем хомуты, и как уже говорилось выше, оставим до утра или хотя бы не менее двух часов.

По происшествии этого времени, закручиваем на место сливную пробку радиатора и закрываем кран блока.

Затем можно заливать охлаждающую жидкость. Перед этим надо бы открыть кран печки и снять два шланга, которые присоединены к дроссельной заслонке. Это нужно чтобы из системы охлаждения удалялся весь воздух. Иначе могут возникнуть воздушные пробки, и полное охлаждение двигателя не будет происходить.

Имейте в виду, что жидкости должно уйти около девяти литров. Если вы залили меньшее количество и при этом радиатор заполнился, это значит, что где то образовалась воздушная пробка и жидкость не проникла во всю систему охлаждения. А это чревато последствиями перегрева двигателя.

После заливки жидкости, пробуем завести двигатель, и внимательно осмотреть все места соединения резины с металлом. Иногда даже можно это сделать на ощупь и посмотреть на пальцы, нет ли там капель жидкости. Если они присутствуют, то нужно подтянуть хомут в этом месте, или найти причину подтекания. Иногда это бывает, если штуцер, на который надевается патрубок, либо помят, либо на нем есть трещина.

Если жидкость в радиаторе убывает, надо подливать ее до уровня нижней кромки заливной горловины. Жидкость в радиаторе может убывать, потому что как только вы завели двигатель, водяной насос разгоняет ее по всей системе. Проверив все патрубки радиатора, и убедившись, что на них нет течи, включите отопитель салона, он должен подавать теплый воздух.

Убедившись что все работает как надо, проверьте уровень в радиаторе охлаждения и закройте его пробку. Долейте, в случае надобности охл. жидкость в расширительный бачок до требуемого уровня.

См. видео

Еще один момент: после замены патрубков радиатора, я обычно, даю двигателю поработать до тех пор, пока не включится электрический вентилятор охлаждения. Это говорит о том, что вы все сделали правильно, и система охлаждения работает, так как должно быть.

Ну вот, на этом заканчиваю статью, и надеюсь на то, что пригодится в процессе ремонта вашего автомобиля.

Почему кипит система охлаждения? — всё о ремонте лада

По каким же причинам ВАЗ 2107 закипает, а если точнее, то жидкость в системе охлаждения двигателя? В этом постараемся разобраться, объяснив все как можно проще. Система охлаждения – это самая «противная» часть машины.

Она способна доставить немало хлопот автомобилисту. И порой избавиться от недочетов оказывается очень сложно. И очень часто происходит так, что тосол выкидывает из бачка, либо он просто закипает, а стрелка при этом неумолимо стремится со скоростью марафонца к красной зоне.

Почему так происходит? На старых автомобилях, например, очень часто при замене одного узла выясняется, что необходимо перебирать чуть ли не всю систему. И если закипел мотор, то вполне возможно, что придется ремонт проводить существенный. Но если это произошло в пробке летним жарким днем, то, скорее всего, имеется неисправность в электрическом вентиляторе или датчике его включения.

Например, сломался термостат. Начали его снимать, обнаружили, что патрубки пришли в негодность. А вместе с ними и хомуты. И это только цветочки, ведь неизвестно, что творится внутри.

Вполне возможно, что тосол кипит из-за того, что его движению что-то мешает. Например, большое количество отложений на стенках блока цилиндров. А теперь более подробно о том, какие могут быть причины того, почему тосол закипает.

Проблема в приводе помпы!

А (при усилии 10 кгс) = 10..15 мм; В (при таком же усилии) = 12..17 мм

Циркуляция охлаждающей жидкости в системе напрямую зависит от водяного насоса. Чем выше его производительность, тем лучше происходит процесс охлаждения. Чтобы производительность улучшить, используют «тюнингованные» помпы, на крыльчатке у которых большее количество лопастей.

Это разумно и правильно, особенно в случаях, когда двигатель подвергался переделкам и усовершенствовался. И если тюнингованный мотор не закипел при работе с родной системой охлаждения, то это нечто из ряда вон.

Если вы откроете капот ВАЗ 2107, то обязательно увидите одну особенность – жидкостный насос и генератор приводятся в движение одним ремнем. Отсюда вывод – если он оборвался или произошло его ослабление, то тосол движется по всем каналам с меньшей скоростью, охлаждение ухудшается в разы.

Выход из этого положения – замена ремня или же его натяжение. На автомобиле ВАЗ 2107, как и на большинстве других, делается это буквально за два движения. И на этом только начинаем рассматривать причины того, почему же двигатель закипел. Дальше интереснее.

Проблема в расширительном бачке?

В нем тоже может быть неисправность. Обратите внимание на несколько моментов:

  1. Присутствуют ли трещины на бачке?
  2. Пробка свободно пропускает воздух?
  3. Затяжка хомутов проведена надежно?
  4. Уровень жидкости в допустимых пределах?

Только лишь ответив на все эти вопросы, можно будет говорить о том, в расширительном бачке есть ли недочеты. Если в нем имеются трещины, то сквозь них будет просачиваться тосол. Вот и причины повышения температуры. Инжектор или карбюратор – не имеет значения, расширительный бачок должен быть в идеальном состоянии.

Следствие – постоянно нужно доливать его, так как в расширительном бачке уровень начнет падать. Падение уровня – это первый шаг к перегреву. Старайтесь держать его между отметками «MAX» и «MIN».

В таком только случае тосол будет нормально циркулировать по системе. Причины закипания часто кроются в мелочах. Например, двигатель закипел после того, как водитель не уследил за уровнем антифриза.

Вентилятор радиатора

Как вы понимаете, двигатель работает в самых разных режимах. Иногда он тянет автомобиль по трассе с высокой скоростью, а иногда по пробке. И в последнем случае скорость ниже, нежели у пешеходов.

В чем же разница? А в том, что радиатор на автомобиле ВАЗ 2107 обдувается в двух этих режимах различным количеством воздуха. В первом случае потока хватает для того чтобы поддерживать температурный баланс, а вот во втором его недостаточно. И неважно, инжектор или карбюратор, обдув радиатора должен происходить в нормальном режиме.

Приходится создавать искусственный поток при помощи электрического вентилятора. В более ранних автомобилях ВАЗ 2107 (да и вообще в «классической» серии) использовались крыльчатки, которые монтировались на оси жидкостного насоса. С помощью этих механизмов радиатор подвергается обдуву. Электрический вентилятор может не выполнять свои функции по таким причинам:

  1. Произошло разрушение крыльчатки.
  2. Вышел из строя датчик, отвечающий за включение вентилятора.
  3. Сгорела обмотка электродвигателя.
  4. Разрушение электропроводки (обрыв, нарушение контакта, окисление).
  5. Выход из строя реле, предохранителя, кнопки (если данные элементы присутствуют в конструкции).

Последний пункт относится по большей части к автомобилям ВАЗ 2107, у которых схема включения вентилятора доработана путем установки в салоне кнопки. С ее помощью водитель может принудительно запустить вентилятор.

Если же не происходит запуск даже с кнопки, выяснить нужно причины. Для этого провода от вентилятора соедините с клеммами аккумулятора. Если не заработал – имеется разрушение обмотки двигателя.

Обратите внимание: для лучшего обдува используйте диффузор! Это небольшой пластиковый элемент, который заставит идти на радиатор большее количество воздуха. И если нет поломок в вентиляторе, то обязательно поставьте диффузор, радиатор вам будет благодарен.

Дело в пробке!

На системах охлаждения, которые используются в восьмом семействе ВАЗ и выше, применяется несколько иная конструкция. Образование пробок практически невозможно (но реально). А вот в ВАЗ 2107 пробка воздуха может появиться в любой момент. И причин для этого может быть масса, но чаще всего – это нарушение герметичности в системе.

Внимательно осмотрите все патрубки на наличие трещин и повреждений. Головкой на «6» или «8» проверьте затяжку всех хомутов. После этого осмотрите радиаторы (включая тот, который в отопителе используется), нет ли на них повреждения ячеек. Если же тосол выкидывает из бачка, то у вас самая неприятная поломка, о ней будет рассказано немного позже.

Прокачка системы

На автомобилях ВАЗ 2107 и ее аналогах (моделях 2101-2106) выгнать пробку можно очень просто. Достаточно снять патрубок, который идет к карбюратору для обогрева заслонки. Если установлен инжектор, то снимаете патрубок, идущий к дроссельному узлу.

Затем заливаете в радиатор тосол. И не забывайте о том, что краник печки обязательно необходимо открывать. Когда он наполнится, необходимо руками обжимать все патрубки (а точнее – верхний и нижний). Тосол при этом должен уйти.

Доливаете недостающее количество и заводите двигатель. Прогреваете и внимательно следите за уровнем, иногда доливаете тосол. Придется доливать около трех литров. И следите за тем, когда пойдет жидкость из трубки, соединяемой с карбюратором.

Когда это произойдет, нужно установить ее на место и затянуть хомут. Конечно, если на этом остановиться, то не получится избавиться от поломки. Тосол все равно закипает, температура растет. И почему так происходит? Сделайте еще несколько процедур и все придет в норму.

Надеваете перчатку и продолжаете медленно обжимать патрубки. При этом нужно на радиатор установить пробку, а в расширительном бачке должен быть тосол между двумя отметками. Вот и все, воздуха нет, циркуляция происходит в нормальном режиме.

Один небольшой совет: при заправке системы желательно поставить машину таким образом, чтобы ее перед был выше зада. Это позволит обеспечить полное заполнение системы. В итоге тосол не бурлит, не кипит, автомобиль работает, как часики.

Термостат всему голова

Не очень приятная поломка, особенно если случается в дороге. И если уж двигатель закипел по причине неисправного термостата, то выход один – менять этот элемент системы. Правда, на первых порах можно его слегка «реанимировать», для этого нужно нанести несколько резких ударов по его корпусу чем-нибудь тяжелым.

Но не всегда такое «грубое» решение может помочь. Значительно больше неприятностей будет, если жидкость из бачка выкидывает. Термостат позволяет системе переключать циркуляцию жидкости между двумя кругами – большим и малым. Отличаются эти круги тем, что в первом к процессу охлаждения подключается радиатор. И если он не подключается, то жидкость закипает.

На автомобилях ВАЗ 2107, да и на всех автомобилях этого производителя, выход из строя термостата происходит таким образом, что тосол продолжит циркулировать по малому кругу. И даже если вы включите с кнопки вентилятор радиатора, это не спасет ситуацию.

Машина все равно едет плохо, тосол закипает, а вы не сможете сразу понять, почему это происходит. А ответ очень прост – чтобы увеличить срок эксплуатации термостата, не лейте в систему проточную воду. Используйте любые антифризы, в частности, тосол. Вода оставляет большое количество накипи, которая препятствует движению элемента термостата.

Более серьезные поломки

Машина – это дорогое удовольствие и любая поломка обходится в копеечку.

Из «дорогостоящих» поломок системы охлаждения можно выделить такие:

  1. Засорение радиатора.
  2. Разрушение прокладки головки.

Причем вторая причина оказывается более существенной, намного хуже, когда выкидывает жидкость из бачка. Хотя засоренный радиатор сложно промыть качественно. Но если вооружиться опытом полицейских из США, то выход найдете.

Заливаете в него газированную воду черного цвета (не будем рекламировать), даете постоять некоторое время. И все, внутренности идеально чистые. А можно и просто заменить радиатор. Намного хуже, если вы начали замечать, что в расширительном бачке жидкость бурлит.

Это явный признак того, что имеется пробой в каком-то месте прокладки. Нужно ее менять незамедлительно, чтобы не прогрессировала эта поломка. Иначе ремонт может вылиться в копеечку.

Но почему же жидкость бурлит? Посмотрите внимательно на работу двигателя в таком режиме. Сквозь трещину тосол просачивается внутрь цилиндра. И попасть он может как в систему смазки, так и в камеры сгорания. Симптомы:

  1. Наличие белого дыма из выхлопной трубы.
  2. Следы тосола в масле, увеличение уровня.

Вот и вся неисправность, до безобразия просто. Тосол бурлит, закипает, температура постоянно растет. И это вызывает массу проблем. Кипит жидкость из-за образования воздушных пробок.

А вот бурлит потому что воздух под большим давлением поступает из камеры сгорания в систему охлаждения. Выход только один – заменить прокладку.

И если выкидывает в бачок под сильным напором жидкость, сразу нужно грешить на прокладку ГБЦ.

Вместо заключения

Это все причины повышения температуры жидкости в системе охлаждения автомобиля ВАЗ 2107. И напоследок хотелось бы отметить, что кипит тосол и в том случае, если двигатель подвергается большим нагрузкам.

Вы спрашивали в х: где можно заказать изготовление иностранных номеров? Да, действительно задачка эта нестандартная. Решают ее здесь: http://dublikat-nomer.ru/izgotovlenie-inostrannykh-nomerov.php

Старайтесь не испытывать его на прочность и не превышать допустимые обороты коленчатого вала. А также своевременно меняйте тосол и проводите замену всех элементов системы. И тогда машина будет работать в идеальном режиме и никогда не подведет вас.

Почему при горячем двигателе радиатор остаётся холодным и как это исправить

Чуть ли не каждый автомобилист хотя бы раз в своей водительской жизни сталкивался с таким явлением как перегрев двигателя. Для одних это большая редкость, а для других повседневная рутина.

Нельзя недооценивать перегрев, поскольку он способен привести к достаточно серьёзным негативным последствиям, которые проявятся в виде дорогостоящих поломок. А иногда ситуация и вовсе оказывается критической, когда двигатель выходит из строя, требуется капитальный ремонт, либо полная замена силового агрегата.

Чтобы не допустить подобного развития сценария, следует периодически проверять состояние системы охлаждения, контролировать её работоспособность и своевременно выполнять все действия, направленные на устранение неисправностей.

Но некоторые проблемы появляются неожиданно, и порой предотвратить или предусмотреть их сложно. Потому автолюбителям и даже автовладельцам со стажем нужно понимать, почему радиатор остаётся холодным, а машина греется, то есть поднимается температура ДВС.

Симптомы и причины

Чтобы разобраться в вопросе о том, почему радиатор остаётся холодным, а двигатель при этом горячий, следует изучить признаки и непосредственно сами причины подобной ситуации.

Основным признаком выступает повышение температуры на указателе, который располагается непосредственно на приборной панели вашего автомобиля. Стрелка выходит за пределы белой зоны, и оказывается в красной.

На других машинах используются несколько иные контроллеры, потому на панели приборов может просто загораться сигнальная лампочка, сообщающая о чрезмерно высокой температуре, воспринимаемой как перегрев.

Другие признаки проявляются в виде падения мощности двигателя, утраты тяги и детонационных стуков, когда водитель резко нажимает на педаль газа и разгоняется.

Причина детонации заключается в том, что повышенная температура привела к изменению процесса сжигания топливовоздушной смеси внутри рабочих цилиндров.

Вместо того, чтобы сжигать смесь, она начинает взрываться. Процесс сгорания сменяется на взрывы.

Не стоит забывать о существующих нормах температуры двигателя. В нормальном рабочем состоянии мотор прогревается до 85-95 градусов Цельсия. Это не считается перегревом, а позиционируется как оптимальный режим работы ДВС.

Допускаются ситуации, когда температурные показатели возрастают до 100-105 градусов Цельсия. Особенно в ситуациях, когда речь идёт о кратковременном повышении.

Это распространённая ситуация в летний период, когда длительный простой в пробке способствует нагреву несколько выше, нежели предусмотренные рабочие показатели.

Фактически нагрев до 105 градусов Цельсия можно воспринимать как норму. Но если температура растёт, преодолевая максимально допустимые границы, здесь речь идёт уже о перегреве. Необходимо искать объективные причины, почему так происходит, а также находить выход из сложившейся ситуации.

Специалисты выделяют несколько причин, по которым двигатель перегревается, а сам радиатор системы охлаждения при этом холодный:

  • Дефицит ОЖ в системе. Самая банальная причина, на которую следует обратить своё внимание в первую очередь. Если жидкости охлаждения мало, она будет кипеть раньше, что и спровоцирует нарушения в работе системы. Нарушается процесс отвода тепла;
  • Нарушение герметичности. Не стоит забывать, что система охлаждения не является герметичной. Постепенно часть ОЖ уходит и испаряется. Потому важно контролировать её уровень и периодически доливать антифриз;
  • Подтёки радиатора, патрубков и соединительных узлов;
  • Внутренние течи, возникающие из-за трещин в ГБЦ или БЦ, а также по причине пробитых прокладок. В результате антифриз проникает в цилиндры;
  • Радиатор. У него используются мелкие соты, которые могут легко загрязниться. В результате нормальная циркуляция ОЖ нарушается, что обусловлено скопившимися отложениями. Если вентилятор охлаждения включается, но радиатор остаётся холодным, наверняка нарушилась циркуляция антифриза;
  • Датчик. Во многих автомобилях электровентилятор радиатора включается по команде от контролирующего датчика. Если этот датчик не передаёт сигнал, вентилятор не будет работать, либо же будет функционировать недостаточно эффективно;
  • Воздушные пробки. Ещё одна причина, почему двигатель уже практически закипел, что радиатор остаётся холодный. Параллельно с этим температурный датчик не всегда указывает, что в системе перегрев. Электроника не замечает, как ДВС кипит. Требуется избавиться от воздушной пробки;
  • Термостат. Двигатель может греться, а радиатор всё ещё остаётся холодный порой по причине того, что вышел из строя термостат. Это специальный клапан, распределяющий потоки ОЖ по двум кругам. Малый круг предусматривает циркуляцию внутри рубашки охлаждения, что требуется для быстрого прогрева. Большой круг проходит через радиатор для обеспечения более эффективного охлаждения. Если термостат заклинит, антифриз сможет проходить только по малому кругу, то есть радиатор останется холодным, а двигатель закипит. В итоге мотор греется, а наш радиатор неизменно холодный. Здесь стоит потрогать нижние патрубки, которые идут на радиатор. Если они холодные, а двигатель перегревается, наверняка проблема в термостате;
  • Неисправность насоса. В системе охлаждения используется помпа, то есть водяной насос, перекачивающий антифриз. Это позволяет создать принудительную систему циркуляции. Обычно помпа протекает или изнашиваются элементы крыльчатки. Иногда может происходить заклинивание. Если радиатор холодный, а мотор перегревается, но при этом следы течи отсутствуют, тогда причина кроется в изношенной крыльчатке. То есть насос плохо перекачивает антифриз, жидкость в моторе, двигаясь по малому кругу, нагревается интенсивнее, нежели в радиаторе. В результате оказывается, что нагрев происходит неравномерно, двигатель уже закипает, а радиатор остаётся всё ещё холодным.

Как вы можете наглядно видеть, причин подобного состояния двигателя и радиатора системы охлаждения достаточно много. И каждая из них потенциально может привести к серьёзным последствиям.

Дополнительные причины

Наглядно видно, что существует достаточно большое количество причин для перегрева силовой установки на автомобиле при абсолютно холодном радиаторе охлаждения.

Вне зависимости от причин, любой чрезмерный перегрев мотора, когда температура повышается до критических отметок, является предвестником серьёзных поломок и неисправностей. Их значительно проще и дешевле предотвратить, нежели потом устранять.

Интересно и то, что бывают ситуации, когда в системе охлаждения нет никаких загрязнений, антифриз или тосол находятся на достаточном уровне, водяной насос, вентилятор и термостат исправные, хорошо работают.

Но при всём при этом двигатель продолжает перегреваться. Если ситуация складывается именно таким образом, настоятельно рекомендуется проверить угол опережения зажигания.

Если он сбит, тогда процесс сжигания топливовоздушной смеси нарушится, двигатель начнёт перегреваться.

Есть и другой вариант, когда сильный перегрев мотора обусловлен работой на некачественном топливе или на горючем, октановое число которого не соответствует заданным автопроизводителем параметрам. В итоге температурный режим процесса сгорания топливовоздушной смеси нарушается.

Существуют редкие случаи, которые также нельзя исключать. Здесь перегрев связан уже с общим изношенным состоянием силового агрегата, а также с износом его цилиндро-поршневой группы.

В подобных ситуациях не исключено, что мотор будет нагреваться выше нормальных отметок, но радиатор останется холодным. Это связано с износом поршневых колец, недостаточной герметичностью камеры сгорания.

В итоге не просто нарушается процесс сгорания топлива, но ещё и прорываются раскалённые газы через уплотнители. Тут мощность моментально упадёт, начнётся перегрев.

Правильные действия водителя

В ситуациях, когда двигатель перегревается, но радиатор остаётся холодным, важно предпринять правильные меры, чтобы не допустить ухудшения ситуации, а также постараться предотвратить какие-то серьёзные неисправности и дорогостоящие поломки.

Порой бывает так, что водитель паникует раньше времени. Обычно это происходит у автомобилистов, которые только недавно сели за руль, либо же поменяли машину, не успев ещё привыкнуть к особенностям её поведения и к режимам работы самого двигателя.

Здесь речь идёт о кратковременных перегревах, что можно в определённой степени считать нормой для многих моторов. Кратковременный перегрев обычно происходит при длительном простое в пробке. Тогда стрелка температурного датчика, выведенная на приборную панель, поднимается до критической красной зоны.

Но стоит машине тронуться, когда появляется обдув за счёт встречных потоков воздуха, а также активируется работа вентилятора охлаждения, температура возвращается в норму. То есть для начала постарайтесь понаблюдать и последить за тем, будет ли температура падать после скачка вверх, до красной зоны.

Но не стоит ждать и наблюдать, когда машина находилась в движении, то есть обдув встречным воздухом был, либо работал вентилятор. В подобных ситуациях специалисты дают несколько полезных рекомендаций:

  • Если автомобиль двигался во вполне нормальных условиях, не провоцирующих кратковременный перегрев, но температура всё равно начинает увеличиваться и достигает критической отметки, не глушите сразу мотор;
  • Также не стоит пытаться охладить силовой агрегат, поливая его снаружи холодной водой, либо путём добавления в расширительный бачок с жидкостью охлаждения холодной воды;
  • Если проигнорировать эти рекомендации, залить мотор водой или добавить её в бачок, наверняка придётся ремонтировать двигатель. Причём зачастую такой ремонт сопровождается обязательной заменой блока цилиндров и головки блока;
  • Если вы хотите остудить двигатель, опустить температуру мотора при холодном радиаторе до нормальных отметок, лучше съедьте с дороги, остановитесь и включите в машине печку. Не имеет значения, что сейчас весна или лето, в салоне достаточно тепло и без работающего обогрева;
  • Включение печки позволит отвести лишнее тепло от двигателя, передав его в салон вашего автомобиля;
  • Параллельно нельзя выключать сам двигатель. Просто переведите коробку в нейтральное положение, и оставьте мотор работать в режиме холостых оборотов;
  • Подождите несколько минут, предварительно выполнив все описанные действия;
  • Параллельно контролируйте, нет ли нигде признаков утечки жидкости охлаждения. Для этого придётся выйти из машины, заглянуть под машину и в подкапотное пространство;
  • Если течи отсутствуют, то при этом проведённые манипуляции с печкой и холостыми оборотами силового агрегата не позволили опустить температуру ниже критической отметки, глушите мотор.

Далее уже потребуется вызывать эвакуатор или проситься к кому-нибудь на буксир, чтобы добраться до гаража или ближайшего сервисного центра. Там уже будете выяснить причины, искать виновного и проводить соответствующие ремонтно-восстановительные работы.

Но есть ситуации, когда двигатель нужно глушить сразу, как только температура двигателя достигла своего пикового значения.

Это случаи, когда в процессе езды вы увидели внезапно валящий пар из-под подкапотного пространства, и параллельно наблюдаются следы утечки жидкости охлаждения. Если вы столкнулись с подобными обстоятельствами, остановитесь и заглушите двигатель.

Тут нет никакой необходимости ждать, пока после включения печки температура начнёт падать. Иначе вы рискуете окончательно угробить мотор.

Двигатель нуждается в грамотной эксплуатации. Это основа его сохранности, эффективной, безопасной и продолжительной работы. Также параллельно всегда старайтесь следить за состоянием системы охлаждения.

Любые следы утечки охлаждающей жидкости, малый уровень ОЖ в расширительном бачке, чрезмерный рост температуры при нормальных условиях эксплуатации должны стать поводом проверить состояния всей системы.

Столкнувшись с ситуацией, когда силовая установка на вашем автомобиле заметно перегревается, примите соответствующие меры, найдите причину повышения температуры и устраните её. Если с самостоятельной диагностикой возникают сложности, лучше сразу обратиться за помощью к квалифицированным специалистам.

Кипит тосол в расширительном бачке

Почему же кипит тосол? Этим вопросом задаются многие автолюбители, столкнувшиеся с этим явлением во время езды на автомобиле. Причин, по которым может закипеть тосол, достаточно много, впрочем, как и способов их устранения.

  • Причина 1. Слишком низкий уровень охлаждающей жидкости в расширительном бачке. Такое случается, если тосол был залит в недостаточных количествах. Его уровень должен быть между метками «min» и «max» на корпусе бачка. Однако, не исключена и утечка охлаждающей жидкости, которая может быть где угодно. После устранения течи, просто залейте недостающее количество тосола в бачок.

Не герметичность системы тоже может стать причиной кипения, так как отсутствует нормальное давление в системе охлаждения. Поэтому, устранение утечек и любых других повреждений в системе охлаждения выполняется обязательно. Исключением является пробка расширительного бачка. Отверстия в ней предназначены для выпуска избыточного давления, чтобы бачок не разорвало.

Видео — Из-за чего давит тосол в расширительный бачек?

  • Причина 2. Не срабатывает вентилятор охлаждения двигателя. Особенно это актуально для современных автомобилей, которые оборудованы электрическими вентиляторами охлаждения. Суть работы данного устройства предельно проста: при достижении тосола определенной температуры, срабатывает датчик температуры и замыкает цепь включения электрического вентилятора. По мере охлаждения, температура снижается, и датчик выключается, размыкая цепь вентилятора. Таким образом, происходит автоматизация процесса охлаждения, которая может быть нарушена двумя факторами: поломка электродвигателя вентилятора и выход из строя самого датчика.

Для диагностики данной неисправности можно проделать следующий тест: как только температура охлаждающей жидкости дойдет до отметки, превышающей 100 градусов, обратите внимание на состояние вентилятора.

Если он не сработал, вначале, проверьте его работу. Для этого замкните оба провода, которые подключаются к датчику вентилятора и если вентилятор не начал вращаться, значит, поломка коснулась электродвигателя.

В этом случае, можно заменить только двигатель или вентилятор целиком.

Если же вентилятор сработал, то поломка кроется в датчике температуры. Слейте тосол и замените датчик новым.

  • Причина 3. Образование воздушной пробки в системе охлаждения. Пузырь воздуха в системе охлаждения мешает нормальной циркуляции охлаждающей жидкости. Воздушная пробка является обычным явлением и образуется после замены тосола. Для ее устранения автомобиль на пригорок передом к вершине, выкрутите пробку радиатора и запустите мотор. Попросите помощника энергично нажимать на педаль газа, а сами, в это время, нажимайте на патрубки системы охлаждения до тех пор, пока не исчезнут пузыри, появляющиеся в радиаторе. После этого, закрутите пробку и долейте охлаждающую жидкость до номинальных отметок.
  • Причина 4. Низкое качество охлаждающей жидкости. Является самой распространенной проблемой водителей, которые «сэкономили» на тосоле. Дело в том, что некачественный тосол, купленный у недобросовестного производителя по низкой цене, разбавляется с помощью воды. А так как температура кипения воды ниже, чем у тосола – это значит, что появляется риск возникновения кипения. Особенно часто это происходит при остановке двигателя.
  • Причина 5. Прокладка головки блока цилиндров. Прогоревшая прокладка тоже нередко становится причиной закипания тосола, так как нарушает герметичность системы охлаждения. Чтобы определить ее неисправность, можно завести мотор и попросить помощника медленно тронуться под нагрузкой. Если в бачке появляются пузыри воздуха, то это явный признак неисправности прокладки, которую можно только заменить. Также могут наблюдаться остатки охлаждающей жидкости в выхлопе автомобиля. Уровень тосола, при этом, значительно снижается.
  • Причина 6. Другие проблемы системы охлаждения. К таковым относят: водяной насос от другого производителя, повышенная загрязненность радиатора и отсутствие нормального потока воздуха. Последняя неисправность часто встречается у вентиляторов, установленных на водяном насосе. Если применять такой вентилятор без специального кожуха, то он будет обдувать горячим воздухом, который собирается из подкапотного пространства. Поэтому, применение кожуха на таком вентиляторе является обязательным.

В случае с водяным насосом от другого производителя, его лопасти могут оказаться заметно меньше нормы, из-за чего и появляется недостаток давления в системе. Его нужно просто заменить, однако, диагностика такой неисправности достаточно проблематична.

Если радиатор сильно загрязнен, то промойте его струей воды под большим давлением. Эта процедура заметно и положительно влияет на процесс охлаждения двигателя.

  • Причина 7. Неисправность термостата. Термостат при температуре, примерно, 90 градусов открывает клапан и «пропускает» охлаждающую жидкость на большой круг системы охлаждения. Бывает такое, что клапан попросту не открывается и жидкость передвигается только по малому кругу, что и становится причиной кипения. Диагностика такой неисправности производится измерением температуры патрубков большого круга. Если они холодные, то неисправность действительно коснулась термостата и его нужно заменить.
  • Причина 8. Тосол пора менять. Это самая безопасная причина закипания. Дело в том, что тосол имеет свойство изменять свой химический состав при длительной эксплуатации, что непременно ведет к изменению температуры его кипения, а также ухудшению его охлаждающих свойств. В этом случае, его просто нужно заменить.

Температура кипения тосола

Изначально, на первых автомобилях, в качестве охлаждающей жидкости, применялась вода. Температура кипения воды равняется 100 градусам Цельсия.

Причины, по которым от воды было принято решение отказаться, крылись в ее низкой температуре кипения, не рассчитанной на большие нагрузки, и ее замерзание зимой. Ведь при замерзании, она превращалась в лед, а ее объем значительно расширялся.

Такие явления приводили к тому, что блок цилиндров просто трескался и из строя выходил целиком весь двигатель, блок которого можно было только заменить.

Такие недостатки отсутствуют в тосоле. Дело в том, что тосол обладает определенным химическим составом, который позволяет ему выдерживать достаточно низкие температуры, что дает возможность нормальной эксплуатации автомобиля зимой. Кроме того, температура кипения тосола значительно выше, чем у воды и составляет 125 градусов Цельсия.

Тем не менее, такая величина как температура может варьироваться от 108 до 125 градусов. Это связано с химическим составом охлаждающей жидкости, который, соответственно и меняет температуру кипения.

Изменение состава делает производство тосола более экономичным, цена на него падает, но при этом, снижается и температура кипения.

Поэтому, при покупке тосола не стоит уделять особое внимание экономии, так как от этого будет зависеть правильно охлаждения вашего двигателя.

Следует быть особо осторожным к тосолу с качественным не соответствием. Обычно, такая охлаждающая жидкость стоит довольно-таки мало, что и является заманчивым для водителей.

Однако температура кипения некоторых экземпляров и вовсе составляет 85 градусов, что является опасным для двигателя автомобиля. Поэтому, проявляйте осторожность и не покупайте некачественную охлаждающую жидкость.

Этим вы сэкономите большое количество нервов и денег.

Что делать, если двигатель перегрелся?

Чтобы понять, что перегрев двигателя настал, посмотрите на указатель температуры охлаждающей жидкости. Если его температура превышает норму, то необходимо немедленно остановиться на обочине и заглушить двигатель, включить аварийную сигнализацию и установить знак аварийной остановки.

Кстати, стоит отметить, что некоторые двигатели могут продолжить свою работу после выключения зажигания. Данный режим является аварийным, поэтому, быстро включите первую передачу, выжмите тормоз и резко отпустите педаль сцепления.

Подобное действие негативно сказывается на диске сцепления, но зато убережет вас от поломок в двигателе.

Откройте капот автомобиля, так двигатель охладится намного быстрее. На этом первая помощь закипевшему двигателю заканчивается. Дальше автолюбители допускают грубые ошибки.

Во-первых, ни в коем случае нельзя открывать пробку радиатора или расширительного бачка. Так как кипение происходит в блоке цилиндров, то открытый бачок может спровоцировать достаточно мощный выброс кипящей жидкости наружу, что неизбежно приводит к ожогам рук и лица.

Во-вторых, не поливайте горячий двигатель холодной водой. Перепад температур почти всегда приводит к тому, что блок цилиндров может треснуть и тогда дорогостоящего ремонта не избежать.

Не предпринимайте никаких действий, пока кипение не прекратится. Только после этого можно взять тряпку и аккуратно открыть крышку расширительного бачка, скинув, при этом, остатки давления в системе. После этого залейте недостающее количество охлаждающей жидкости в бачок, стараясь, при этом, не попасть на блок цилиндров или его головку.

Запустите двигатель автомобиля и следите за изменением температуры ОЖ. Если она поднимается достаточно быстро, то дальнейшее движение до станции технического обслуживания или гаража возможно только на тросе. Если медленно, то можно добраться до гаража или СТО самостоятельно, при этом, старайтесь не делать больших оборотов и не нагружать двигатель.

Соблюдая эти несложные правила, можно избежать дорогостоящего ремонта двигателя и сохранить свое здоровье при работе с горячими охлаждающими элементами. Удачи на дорогах! 

Кипит тосол в расширительном бачке ВАЗ-2112: причины и ремонт

Почти каждый автовладелец 16-клапанного ВАЗ-2112 сталкивался с тем, что закипает охлаждающая жидкость в расширительном бачке. Но, не все понимают, почему такое случается. В этой статье рассмотрим, почему кипит жидкость в бачке и как это исправить.

Причины

Процесс закипания жидкости в расширительном бачке Индикатор температуры в красной зоне

Что же способствует тому, чтобы закипела жидкость в расширительном бачке? Конечно же, это связано с системой охлаждения. Если смотреть на это более детально, то проблема будет крыться в одной из деталей, которые послужили причиной. Итак, рассмотрим, непосредственно из-за чего может возникнуть эффект:

  • Термостат.
  • Радиатор.
  • Вентилятор и неисправность проводки.
  • ЭБУ.

Когда рассмотрены все причины, можно перейти непосредственно к методам устранения неисправности.

Методы устранения

Закипел 16-ти клапанник. Ни в коем случае не открывается бачок охлаждающей жидкости

Прежде чем рассмотреть варианты решения вопроса стоит отметить, что нельзя допускать того, чтобы перегревался двигатель, поскольку последствия могут быть самые непредсказуемые, а ремонт может стоять солидную сумму денег. Итак, рассмотрим, последовательность действия для устранения неисправности.

Термостат

Самая распространенная причина, особенно летом. Заклинивание термостата встречается очень часто и мало кто с водителей не проходил через это. Помимо того, что горячая охлаждающая жидкость циркулирует по малому кругу, да еще если не срабатывает вентилятор, то точно необходимо ждать закипания.

В данном случае метод устранения достаточно прост – замена термостата нормализирует работу. Конечно, бывают случаи, когда новая деталь очень быстро выходит из строя, но это связано непосредственно с качеством изделия.

Радиатор

Забитый радиатор может послужить тому, что давление будет нарастать, и жидкость пойдет в бачок при этом уйдет с системы. Если к этому всему добавить еще и нерабочий термостат, то получиться что жидкость будет кипеть.

Для устранения причин необходимо демонтировать забитый радиатор и прочистить его. Если же это не помогло и охлаждайка нормально не проходит, то необходимо заменить деталь, поскольку осадок на стенках изделия дошел до критической отметки.

Вентилятор и проводка

Одной из самых распространенных неисправностей можно назвать вентилятор и его неисправности. Особенно это влияет летом, когда не хватает природного охлаждения.

Так, выход из строя детали может привести к закипанию жидкости.

Еще нужно отметить, что могут окислиться разъемы проводов электроцепи вентилятора, при этом питание на узел подаваться не будет, и он перестанет срабатывать, чтобы обеспечить охлаждение.

Устранить неисправность можно простым тестом проводки и самого изделия. При необходимости его нужно заменить. Также, стоит проверить предохранитель вентилятора и реле вентилятора, который мог перегореть вследствие короткого замыкания.

ЭБУ

Последнюю причину закипания стоит поискать в электронном блоке управления, поскольку мог перегореть датчик температуры охлаждения. Если подключиться к «мозгам», то все станет предельно ясно и понятно, ведь на экране появятся ошибки, которые необходимо устранить.

Самодиагностика с указанием ошибки повышенной температуры двигателя (видео)

Выводы

Причин закипания охлаждающей жидкости в расширительном бачке ВАЗ-2112 16 клапанов не так и много. Зачастую, это связано с нерабочим термостатом и вентилятором, которые не обеспечивают, должного охлаждения двигателю. Не стоит откладывать процесс ремонта надолго, ведь каждый перегрев может послужить причиной поломки основного силового агрегата.

Воздух в системе охлаждения двигателя автомобиля: признаки и способы устранения воздушной пробки

Жидкостная система охлаждения двигателя является герметичной и представляет собой целый комплекс различных элементов, которые взаимодействуют между собой.  Также в зависимости от температуры ОЖ напрямую зависит циркуляция рабочей жидкости по малому или большому кругу.

Как правило, наиболее частыми неисправностями, с которыми сталкиваются автолюбители, является течь тосола или антифриза, а также разгерметизация и воздушная пробка в системе охлаждения двигателя.

В этой статье мы рассмотрим причины завоздушивания системы охлаждения двигателя, признаки, которые указывают на то, что в систему попал воздух, а также основные способы удаления воздушных пробок.

Воздух попал в систему охлаждения двигателя: основные признаки завоздушивания

Для лучшего понимания начнем с общих принципов работы. Пока двигатель холодный, жидкость циркулирует только по рубашке охлаждения (специальные каналы в блоке цилиндров и ГБЦ), не поступая в радиатор. Циркуляцию обеспечивает водяной насос (помпа).

После того, как температура ОЖ достигнет определенного показателя, происходит срабатывание термостата, который открывает большой круг (жидкость проходит через радиатор). Если охлаждения ОЖ при движении по большому кругу недостаточно, тогда автоматически подключается вентилятор охлаждения двигателя (воздушное охлаждение).

При этом важно, чтобы система работала корректно, так как ее эффективности зависит поддержание оптимальной температуры ДВС, нормальное функционирование внутрисалонного отопителя (печки) и т.д.

Обратите внимание, указанные неисправности могут возникать по разным причинам, то есть двигатель начинает перегреваться не только по причине возникновения воздушных пробок, однако такую вероятность также не следует исключать.

Как и в любой другой жидкостной системе замкнутого типа, воздушные пробки могут привести к тому, что система перестает работать в нормальном режиме. В этом случае также значительно повышается риск перегрева мотора, перестает нормально работать печка.

  • Основным признаком образования воздушной пробки является перегрев двигателя. Другими словами, температура растет выше нормы, указатель температуры может подниматься до красной зоны. При этом при проверке уровня ОЖ в расширительном бачке никаких отклонений может быть не выявлено.
  • Также в холодное время года водитель может заметить, что теплый воздух в салон практически не поступает, хотя двигатель нормально прогрет. Это также указывает на то, что в системе охлаждения может быть воздух.

Так или иначе, но воздушная пробка не позволяет ОЖ нормально циркулировать по каналам системы охлаждения. В результате нарушенной циркуляции возникают те или иные неполадки. В рамках проведения диагностики системы охлаждения двигателя следует проверить уровень ОЖ в расширительном бачке, а также внимательно осмотреть отдельные участки системы.

Не допускается наличие утечек антифриза или тосола, каких-либо видимых повреждений шлангов и патрубков. Также нужно проверить надежность фиксации хомутов в местах соединений. Часто бывает так, что в систему попадает воздух именно по причине незатянутого или пришедшего в негодность затяжного хомута.

Еще отметим, что воздух может попадать через малозаметные трещины в резиновых патрубках, при этом интенсивных течей через эти трещины может и не быть.

Обычно такие трещины сразу не видны, однако детальный осмотр или подача воздуха в систему под давлением для проверки позволяет выявить проблемные участки.

Также во время проверки следует уделить внимание помпе, проверить работу термостата и вентилятора охлаждения.

Если все в норме, тогда высока вероятность того, что печка не работает и мотор перегревается именно по причине воздушных пробок. В этом случае необходимо предпринять меры и «выгнать» такую пробку из системы охлаждения.

Как убрать воздушную пробку из системы охлаждения двигателя

Итак, начнем с простых автомобилей (старые иномарки, отечественный автопром). На таких авто удаление воздуха из системы охлаждения осуществляется следующим образом:

  1. Машину достаточно загнать на эстакаду. Сделать это нужно таким образом, чтобы передняя часть была немного приподнята.
  2. Далее на радиаторе нужно открутить специальную пробку, после чего двигатель можно запустить.
  3. После нескольких минут работы на ХХ воздух стравливается из системы охлаждения мотора.

При этом данный способ не поможет решить задачу на более современных автомобилях. На подобных ТС система охлаждения полностью замкнутого типа, то есть для развоздушивания воздух нужно «выгонять». Чтобы это сделать, можно пойти двумя путями.

Первый способ предполагает откручивание крышки расширительного бачка, затем двигатель с открытой крышкой работает на ХХ какое-то время, затем нужно сесть в автомобиль и интенсивно погазовать, поднимая обороты до 3-3.5 тыс. об/мин. Далее крышку нужно закрутить и проверить работу системы.

Если этот способ не помог, тогда ослабляется верхний патрубок, который идет от печки. Нужно быть готовым к тому, что начнет вытекать и сам антифриз.

Далее двигатель запускается, при этом нужно следить, когда из вытекающей ОЖ пропадут воздушные пузырьки. Их исчезновение укажет на то, что воздушную пробку успешно удалили из системы.

Давайте рассмотрим этот способ более подробно на примере модели ВАЗ «Калина».

Перед началом работ следует подготовить ключи для демонтажа пластиковых защитных элементов. Также потребуется наличие отвертки, чтобы отпускать и затем затягивать хомуты.

  • Итак, первым делом снимается пластиковая защита. Данная защита на указанной модели ТС прикрепляется к корпусу при помощи шпилек, которые имеют уплотнители из резины.
  • Далее с верхнего или с нижнего патрубка нужно снять хомут. Теперь следует открутить крышку расширительного бачка. Если двигатель горячий, соблюдайте осторожность, так как разогретая ОЖ может выплеснуться из бачка!
  • Затем горловина бачка накрывается чистой тряпкой. Далее на горловину следует натянуть подходящую трубку из резины. После этого нужно подать немного воздуха в бачок, дунув в трубку. Желательно делать это при помощи компрессора.

Помните, ОЖ является сильным ядом! Только в крайнем случае продувайте бачок ртом, при этом не допускайте попадания охлаждающей жидкости внутрь, в глаза или на кожу, не вдыхайте пары!

  • После подачи воздуха в бачок, из патрубка, с которого ранее был снят хомут, должен начать вытекать антифриз. После этого нужно убедиться, что в вытекающей ОЖ нет пузырьков воздуха, затем быстро накинуть патрубок на штуцер, поставить хомут на место и затянуть его. На этом этапе процесс развоздушивания можно считать завершенным.
  • Далее потребуется довести уровень ОЖ до нормы (обычно «на холодную» заливается на 4-5 мм. выше отметки «MIN», так как после прогрева ДВС жидкость увеличится в объеме и поднимется до отметки «MAX».
  • После этого двигатель можно завести и прогреть. В ряде случаев в рамках этой процедуры нужно немного накрутить крышку расширительного бачка, не затягивая ее. Затем следует дать силовой установке поработать на холостом ходу, периодически поднимая обороты. Данный способ позволит удалить излишки воздуха, которые могли образоваться при доливе жидкости.
  • Если все в порядке, крышку можно закрутить плотнее, однако не следует стараться затягивать ее слишком сильно.

Полезные советы

Чтобы с системой охлаждения двигателя не возникало проблем в процессе эксплуатации, а также для продления срока службы составных элементов (помпа, термостат), нельзя использовать вместо антифриза или тосола обычную воду. Также не рекомендуется заливать дистиллированную воду вместо антифриза. Такой водой следует исключительно разбавлять концентрат антифриза или тосола в нужной пропорции.

Еще важно помнить, что даже если система герметична, постепенно вода испаряется из системы через специальный клапан, что означает необходимость регулярного контроля уровня в расширительном бачке и периодического долива жидкости при необходимости. Не допускайте сильного снижения уровня охлаждающей жидкости!

При этом частый долив только дистиллированной воды для поддержания уровня приводит к тому, что плотность раствора понижается. Это может привести к замерзанию ОЖ в системе в зимний период. Чтобы этого не произошло, нужно проверять плотность ареометром. При необходимости плотность корректируется заливкой неразбавленного концентрата.

Как правило, срок службы антифриза составляет 2-3 года (в зависимости от производителя, качества состава, состояния двигателя и т.д.).

Например, попадание газов из камеры сгорания в систему охлаждения, сильный перегрев двигателя, общая загрязненность системы охлаждения, использование специальных герметиков для системы охлаждения типа «стоп-течь» и другие нюансы могут быстро привести свежую ОЖ в негодность.

Напоследок отметим, что система охлаждения, как и сам двигатель, требует периодического обслуживания с поправкой на определенные нюансы и особенности эксплуатации. Если в системе обнаружена грязь, замену охлаждающей жидкости двигателя необходимо осуществлять с промывкой.

Радиатор автомобиля также необходимо периодически промывать не только снаружи, но и внутри. Это позволит избавиться от ржавчины, накипи, продуктов распада антифриза или тосола и т.д. Результатом становится максимальная производительность системы охлаждения, что исключает перегревы мотора даже в самых тяжелых условиях, а также эффективная работа печки в зимний период.

Диссипативное охлаждение, вызванное импульсным pe…

Исследуем динамику, вызванную импульсным возмущением в двух квантовые модели Изинга с бесконечным диапазоном, связанные друг с другом и с диссипативным ванна. Мы показываем, что если диссипация тем быстрее, чем выше энергия возбуждения, импульсное возмущение охлаждает низкоэнергетический сектор системы, на за счет высокоэнергетического, в конечном итоге стабилизируя переходный состояние с нарушением симметрии при температурах выше равновесной критической.Такое нетепловое квазистационарное состояние может сохраняться довольно долгое время после пульс, если последний правильно подобран.

Ошибки в пользовательской разметке (помечены; исправления будут внесены в ближайшее время)

Уважаемый главный редактор,

Мы рассмотрели отчеты рецензентов, касающиеся нашей рукописи «Диссипативное охлаждение, вызванное импульсными возмущениями», представленной для публикации в SciPost.

Мы благодарим рецензентов за их конструктивные замечания, к которым мы обращаемся, уместно обновляя исправленную версию нашей рукописи, как подробно описано ниже.Ниже мы также приводим краткий ответ на все замечания рецензентов, а также список основных изменений, которые мы внесли в нашу статью.

Мы считаем, что после улучшений, которые мы внесли в нашу рукопись с учетом замечаний рецензентов, наша статья теперь соответствует требованиям, необходимым для публикации в SciPost, и повторно подадим ее соответствующим образом.

Мы благодарим Вас за внимание к нашему представлению.

С наилучшими пожеланиями

Андреа Нава (от имени всех авторов)

——————————— ————————————————— ———
Ответы на: Анонимный отчет 1 от 2 июля 2021 г. (приглашенный отчет)
———————— ————————————————— —————-

Мы благодарим Рефери за ее/его высокую оценку нашей работы.

[Q1] Идея использования динамической диссипативной динамики для охлаждения сильно взаимодействующих систем многих тел недавно также исследовалась в контексте методов разработки резервуаров (например, [New J. Phys. 15, 073027; Science Adv. 6 , eaaw9268; Phys. Rev. Research 2, 023214]). Авторы должны обсудить, как их подход связан с этими работами.

[A1] Мы благодарим рецензента за то, что он обратил наше внимание на те ссылки, которые вносят очень интересный вклад в термализацию и охлаждение открытых квантовых систем.Теперь мы цитируем их как Refs. [35-37] в заключительном разделе нашей рукописи. В частности:

[Страница 14] «Мы, наконец, упомянем недавние работы [35-37], которые показывают, как правильно разработанные диссипативные протоколы могут эффективно подготовить квантовую систему в ее основном состоянии. Следовательно, адаптация рассеяния может представлять собой новый инструмент для управления открытыми системами многих тел, включая
избирательное охлаждение, которое мы здесь обсуждали».

[Q2] Какова общая площадь импульса в выбранной авторами параметризации? Возможно ли, чтобы энергия возвращалась в систему 1, или авторы рассматривают эквивалент импульса \pi между двумя системами?

[A2] Лазерный импульс имеет высокую колебательную характеристику (см.[18]), с огибающей, заданной уравнением [19] а период T=2π/ω намного меньше времени затухания огибающей τ. Таким образом, общая площадь импульса приблизительно равна нулю, а полная подводимая энергия определяется уравнением [28]. В течение длительности лазерного импульса энергия может течь в обоих направлениях (т. е. туда и обратно между подсистемой 1 и подсистемой 2), демонстрируя таким образом колебательный характер (см. рис. [5, 6] в [21]: Phys. Rev. . Lett. 120, 220601 (2018)) но с общим эффектом охлаждения подсистемы 1.

[Страница 9] «Однако более длительное τ также позволяет энергии течь обратно в подсистему 1 до того, как установится квазистационарное состояние, что приводит к немонотонному поведению».

[Q3] Связано ли критическое время как-то с критическими свойствами лежащего в основе фазового перехода модели Изинга?

[A3] Благодарим рецензента за интересный комментарий. Чтобы решить эту проблему, в исправленную версию рукописи мы добавили рис. [7]. где показано поведение критического времени в зависимости от температуры при приближении к критическому.Выясняется, что критическое время расходится вблизи $T_c$ с критическим поведением, подобным среднему полю.

[Страница 10] «На рис.~\ref{fig:critical} показано поведение $t_{c,m}$ в зависимости от температуры ванны $T$ при фиксированном $r=640$, $\tau=750$ и $E_0=0,2$.{-1}$.

————————————————————— ———————————————————-
Ответы на: Анонимный отчет 2 от 2 июля 2021 г. (предоставленный отчет)
————————————— ————————————————— —

Мы благодарим рефери за ее/его наблюдения.

[Q1] Интересно, почему авторы вводят в уравнение бозоны с твердым ядром? (15). Похоже, они не будут использоваться в дальнейшем, и обсуждение структуры спектра [уравнения.(14)] можно было бы выполнять и без них. Есть ли какая-то глубокая причина для введения бозонов с твердым ядром?

[A1] Бозоны с твердым ядром вводятся для того, чтобы сделать, по крайней мере, на наш взгляд, более прозрачным определение четырех собственных состояний в уравнении [16]. и роль импульсного возмущения. По этой причине в исправленной версии мы записали уравнение импульсного возмущения [18] явно в терминах жестких бозонов, что также отвечает на следующий запрос (см. [R2]-[A2]).

[Q2] Я не совсем понимаю, почему уравнение.(18) имитирует лазерный импульс. По моему мнению, лазер действует на уровне одной частицы (из-за правила дипольного отбора). Поэтому соответствующий оператор должен быть суммой одночастичных операторов. Откуда взялся термин \sigma_x \sigma_x? Это скорее напоминает (диполярное) взаимодействие.

[A2] В нашей модели спины и, что то же самое, бозоны с твердым ядром являются лишь инструментом для представления гильбертова пространства, содержащего четыре энергетических состояния на каждом узле: два, 0 и 1, с более низкой энергией, и два, 2 и 3, с более низкой энергией. более высокий.«Лазерный импульс» допускает переходы между двумя секторами, а именно, 0 ↔︎ 3 и 1 ↔︎ 2, которые просто интерпретируются в терминах жестких бозонов. Ключ к нашему механизму заключается в том, чтобы настроить частоту лазера в резонансе с 1 ↔︎ 2, тем самым уменьшая заселенность бозона b1 и увеличивая занятость b2. Оптическую аналогию можно сделать более очевидной, представив, что b1 четно при четности, а b2 нечетно, так что все переходные процессы 0 ↔︎ 3 и 1 ↔︎ 2 являются дипольно активными.

[Страница 6] Модифицированное уравнение.\dagga_{2,i}$ нечетно, так что все описанные выше переходные процессы связывают противоположные состояния четности».

[Q3] Обозначение уравнения. (23) сбивает с толку по сравнению с уравнением. (8). В одном выражении аргументом является время, а в другом — температура.

[A3] В уравнении [8] параметр порядка и матрица плотности находятся в равновесии при температуре T в уравнении [23] система выходит из равновесия, а матрица плотности становится зависящей от времени и достигает равновесной при $t \rightarrow \infty$.Чтобы различать равновесный и неравновесный случаи, мы добавили суффикс $(eq)$ в формулы п.(2.1).

[Q4] Я нахожу мотивацию диссипативных членов не очень убедительной. Оправданно ли предположить, что скорости явно зависят от времени, т. е. нет ли некоторого неявного разделения временных шкал, которое, как предполагается, сохраняется?

[A4] Заметим, что все результаты заметно не изменятся, если использовать скорость, соответствующую равновесному состоянию, и представить мгновенные собственные состояния через равновесные.Тем не менее, мы решили использовать скорость, зависящую от времени, чтобы соответствовать приближению среднего поля и детальному условию баланса, необходимому для достижения равновесия (см. [25] для сравнения между самосогласованными и неподвижными ваннами в простом случае, и [25]). .[24] для общего обсуждения).

[Страница 7] «Вместо этого мы рассматриваем наиболее общее уравнение Линдблада, совместимое с характером среднего поля гамильтониана (1) и способное привести систему к тепловому равновесию \cite[24,25].[…] (этот выбор называется «самосогласованной ванной» и гарантирует, что система движется к своему тепловому равновесию \cite{24,25})».

Где:
[24]: Н. Ланг и Х. П. Бюхлер, ред. A92, 012128 (2015 г.), Изучение квантовых фаз с помощью управляемой диссипации;
[25]: Д.С. Косов, Т. Просен и Б. Зункович, Journal of Physics A: Mathematical and Theoretical Phys. 44(46), 462001 (2011), Подход основного уравнения Линдблада к сверхпроводимости в открытых квантовых системах.

[Q5] В выводах вы пишете «Наоборот, диссипация усиливает охлаждающий эффект возмущения, стабилизируя нетермическое квазистационарное состояние, которое сохраняется длительное время после окончания импульса.«Уверены ли авторы, что диссипация не просто построена так, как это имеет место? Существует ряд предположений, например, относительно соотношения скоростей, которые в некоторой степени произвольны. Отмечается, что относительная разность энергий является лишь одной из величин, входящих в скорости перехода. Существует также кинетическая часть, которая определяет, может ли переход иметь место (состояния с большой разницей энергий могут быть связаны сложными переходными путями). Особенно для коррелированных систем это кажется соответствующий аспект.В этом смысле я нахожу связь с фотоиндуцированной сверхпроводимостью в K3C60 также несколько надуманной.

[A5] Механизм охлаждения не требует тонкой настройки и сохраняется для широкого диапазона параметров. Мы лишь предполагаем, что высокоэнергетические возбуждения рассеиваются быстрее, чем низкоэнергетические, что является довольно общим обстоятельством. Другой вопрос связан с силой переходных процессов. В нашей игрушечной модели есть только один, который соединяет низкоэнергетический сектор, состояния 0 и 1, с высокоэнергетическим, состояния 2 и 3.Очевидно, что охлаждение тем менее эффективно, чем меньше сила связи. Однако, что касается K3C60, напомним рецензенту, что в эксперименте лазер попадает в довольно ярко выраженный средний инфракрасный пик, который мы связали с экситоном, играющим роль высокоэнергетического сектора, в то время как роль низкоэнергетического сектора здесь играют частично-дырочные возбуждения. Интенсивность этого пика отражает существенную силу процесса. Само собой разумеется, что накачка при возбуждении с очень малой силой поглощения совершенно бесполезна.В самом деле, сила оптического процесса является предпосылкой нашей стратегии охлаждения, о чем прямо упоминается во введении, когда мы пишем: «… в основном основано на существовании высокоэнергетической локализованной моды, которая при включенном лазере способна быстро впитать энтропию…».

[Страница 13] «Стоит подчеркнуть, что хотя мы делаем некоторые не нефизические предположения о диссипативных процессах, мы также показываем, что селективное охлаждение сохраняется для широкого диапазона параметров. В действительности наиболее важным параметром здесь является сила связи с «лазерным импульсом», т.е.т. е. дипольный матричный элемент в реальных материалах или, что то же самое, интенсивность оптического поглощения».

———————————————— ———————————————————
Ответы на: Анонимный отчет 3 на 2021-7-5 (приглашенный доклад)
—————————————- —————————————————

Благодарим Рефери за высокую оценку нашей работы.

[Q1] Я не уверен, насколько реалистична рассматриваемая модель двух связанных гамильтонианов Изинга; возможно, авторы смогут прокомментировать это в исправленной рукописи.

[A1] Несмотря на то, что предлагаемая нами игрушечная модель чрезвычайно проста, она содержит основные компоненты для описания общего механизма селективного охлаждения, который имеет место в более реалистичных системах, таких как, как мы полагаем, фуллериды, легированные щелочью.

[Страница 13] «Очевидно, что наша игрушечная модель представляет собой крайнее упрощение любого реального материала. Однако ключевые ингредиенты, которые делают стратегию охлаждения успешной, могут характеризовать многие реальные системы, особенно сильно коррелированные, где локализованные атомоподобные высокоэнергетические возбуждения сосуществуют с низкоэнергетическими когерентными возбуждениями частица-дырка, например, например.г., в K$_3$C$_{60}$».

[Q2] Я чувствую, что обсуждение в рукописи немного кратко. […]

[A2] Мы благодарим рецензента за ее/его комментарий. В обновленной версии рукописи мы расширили обсуждение в Разделах 3.1, Разделах 3.2 и Разделах 4 и изменили Рис.[8] и рис.[11] провести прямое сравнение с недавними экспериментальными результатами на K3C60 в [14]. Мы также добавили рис.[7] обсудить поведение параметра порядка с температурой. Более того, мы постарались сделать презентацию менее разговорной.

———————————————— ———————————————————
Список основных изменений
— ————————————————— —————————————————-

[Раздел 2.\dagger_{1,i} = \ket{3;i}\bra{0;i}$ плюс их эрмитовы сопряжения (как показано на панели а) на рис.\dagga_{2,i}$ нечетно, так что все описанные выше переходные процессы связывают противоположные состояния четности».

[Страница 7] «Вместо этого мы здесь рассматриваем наиболее общее уравнение Линдблада, совместимое с характером среднего поля гамильтониана (1) и способное привести систему к тепловому равновесию \cite[24,25]. […] (этот выбор называется «самосогласованной ванной» и гарантирует, что система движется к своему тепловому равновесию \cite{24,25})».

[Страница 9] «Однако более длинное τ также позволяет энергии течь обратно в подсистему 1 до того, как установится квазистационарное состояние, таким образом, поведение будет немонотонным.{-1}$».

[Страница 11] «Наконец, на панели b) рис.~\ref{fig:varE0} мы наносим значение параметра порядка подсистемы 1, $m_{x,1}$, как функцию $E_0 $, при фиксированных $r=640$ и $\tau=1200$ и через время $t=2000$, отсчитываемое от пика импульса. Параметр порядка монотонно возрастает с увеличением $E_0$, то есть с увеличением энергии, излучаемой лазерным импульсом, что согласуется с недавними экспериментами в K$_3$C$_{60}$~\cite{Cavalleri-K3C60-2020 }. Действительно, панель б) на рис.~\ref{fig:varE0} следует качественно сравнить с панелью б) на рис.5 из Ref.~\cite{Cavalleri-K3C60-2020}, где выясняется, что более сильный лазерный импульс при фиксированной длительности импульса и длительности импульса накачки переводит систему глубже в метастабильную фазу».

[Страница 12] «По сути, при больших $\tau$ переходная нетермическая фаза с нарушением симметрии становится
квазистационарным состоянием, поддерживаемым диссипативной ванной. Чтобы сравнить качественное поведение временной эволюции при постоянном импульсном «флюенсе» нашей игрушечной модели с экспериментальными результатами работы [3].~\cite{Cavalleri-K3C60-2020}, на панели b) рис.~\ref{fig:tc-tmax_samearea} показан параметр порядка подсистемы 1, $m_{x,1}$, измеренный сразу после окончания лазерного импульса в зависимости от $\tau$. Мы наблюдаем довольно плоскую зависимость параметра порядка от длительности лазерного импульса, если «флюенс» лазерного импульса остается постоянным. Опять же, результат показывает интересное качественное совпадение с экспериментальным наблюдением, представленным на панели а) рис. 5 в Ref.~\cite{Cavalleri-K3C60-2020}, где, действительно, «фотосопротивление в основном не зависело от импульса накачки. длительности и зависела только от полной энергии импульса возбуждения».

[Страница 13] «Стоит подчеркнуть, что хотя мы делаем некоторые не нефизические предположения о диссипативных процессах, мы также показываем, что селективное охлаждение сохраняется для широкого диапазона параметров. В действительности наиболее важным параметром здесь является сила связи с «лазерным импульсом», т.е. дипольным матричным элементом в реальных материалах, или, что то же самое, интенсивность оптического поглощения».

[Страница 13] «Очевидно, что наша игрушечная модель представляет собой крайнее упрощение любого реального материала.Однако ключевые ингредиенты, которые делают стратегию охлаждения успешной, могут характеризовать многие реальные системы, особенно сильно коррелированные, где локализованные атомоподобные высокоэнергетические возбуждения сосуществуют с низкоэнергетическими когерентными возбуждениями частица-дырка, как, например, в K$_3$ C$_{60}$».

[Страница 14] «Мы, наконец, упомянем недавние работы [35-37], которые показывают, как правильно разработанные диссипативные протоколы могут эффективно подготовить квантовую систему в ее основном состоянии. Таким образом, адаптация диссипации может представлять собой новый инструмент для управления открытыми системами многих тел, включая селективное охлаждение, которое мы здесь обсуждали.

Мы добавили одну панель к рис. [3,8,11] и изменили подписи в соответствии с изменениями в тексте, перечисленными выше. Мы добавили рис.[7].

Мы добавили ссылки:
[24]: Н. Ланг и Х. П. Бюхлер, ред. A92, 012128 (2015 г.), Изучение квантовых фаз с помощью управляемой диссипации;
[25]: Д.С. Косов, Т. Просен и Б. Зункович, Journal of Physics A: Mathematical and Theoretical Phys. 44(46), 462001 (2011), подход основного уравнения Линдблада к сверхпроводимости в открытых квантовых системах;
[35]: С.Кормик, А. Бермудес, С. Ф. Уэльга и М. Б. Пленио, New Journal of Physics 15 (7), 073027 (2013), Диссипативная подготовка основного состояния спиновой цепи структурированной средой;
[36]: М. Рагунандан, Ф. Вольф, К. Оспелкаус, П. О. Шмидт и Х. Веймер, Научные достижения 6 (10) (2010), Инициализация квантовых симуляторов симпатическим охлаждением;
[37]: M. Metcalf, J. E. Moussa, W. A. ​​de Jong and M. Sarovar, Phys. Rev. Research3,023214 (2020), Инженерная термализация и охлаждение квантовых систем многих тел.

Ремонт радиатора в Дареме, Северная Каролина

Охлаждение двигателя

Поскольку двигатель вашего автомобиля работает на высоких скоростях, важно, чтобы он имел систему, помогающую охлаждать его и поддерживать оптимальную рабочую температуру. Вот тут-то и появляется радиатор, поскольку он пропускает охлаждающую жидкость по всему двигателю и помогает найти и поддерживать эту температуру. Из-за этой функции важно поддерживать радиатор в хорошем состоянии, чтобы ваш автомобиль не перегревался.Carmedix может помочь именно в этом. Наши сертифицированные специалисты ASE, расположенные в Дареме, Северная Каролина, обладают опытом, оборудованием и техническими навыками для устранения любых проблем, которые могут возникнуть с радиатором. Нужен ли вам ремонт термостата или замена шланга радиатора, мы позаботимся о том, чтобы поставить в радиатор вашего автомобиля только самое лучшее!

Ваш радиатор нуждается в обслуживании?

Как и все другие системы и компоненты вашего автомобиля, радиатор подвержен износу.Чтобы бороться с этим, мы рекомендуем постоянное обслуживание с нашей командой, чтобы убедиться, что вы поймаете проблему до того, как она станет серьезной. Но наряду с этим полезно понимать общие предупреждающие знаки и причины, стоящие за ними, чтобы знать, как действовать в случае внезапных неприятностей. Вот несколько распространенных причин проблем с радиатором и то, что вы можете сделать, когда это происходит!

Негерметичный шланг радиатора

Шланг радиатора отвечает за соединение радиатора с двигателем и обеспечение правильного протекания охлаждающей жидкости.К сожалению, он также несет ответственность за любые утечки в системе охлаждения и является их частым источником. Эти компоненты со временем изнашиваются, и их следует периодически заменять. Вы заметите, что что-то не так, если двигатель начнет медленно перегреваться. Без профессиональной помощи определить конкретную причину будет сложно, поэтому мы рекомендуем обращаться к нам как можно скорее!

Неисправность термостата

Обычной причиной перегрева автомобиля является термостат, представляющий собой тип клапана, который контролирует, сколько охлаждающей жидкости поступает в радиатор и выходит из него.Именно благодаря этому компоненту двигатель может поддерживать оптимальную рабочую температуру. Если термостат выйдет из строя, автомобиль быстро начнет перегреваться, и вы не сможете безопасно управлять автомобилем.

Мы готовы помочь!

Без работающего радиатора двигатель вашего автомобиля быстро перегреется и выйдет из строя, в результате чего вам придется заниматься потенциально дорогостоящим ремонтом двигателя. Убедитесь, что вы следите за состоянием радиаторов, записавшись на ремонт радиаторов в Carmedix в Дареме, Северная Каролина.Наши специалисты, сертифицированные ASE, используют новейшее оборудование и методы обслуживания для решения любых проблем, с которыми может столкнуться радиатор. Независимо от того, протекает ли система или вышел из строя термостат, у нас есть команда и услуги, которые помогут все это исправить. Позвоните нам по телефону 984-888-0791, чтобы запланировать следующее обслуживание! Если у вас плотный график, не стесняйтесь посетить нас на 2105 NC-54 Unit L, так как мы с радостью примем посетителей. Мы находимся в торговом центре Triangle Village!

Масло для Volvo BM Valmet Все модели 2105 (1985-1986).Какое масло лучше? Советы профессионалов по смазке

Масло для Volvo BM Valmet Все модели 2105 (1985-1986). Какое масло лучше? Профессиональные советы по смазке — Kroon-Oil Какое масло следует использовать для вашего Volvo BM Valmet Все модели 2105 (1985-1986)? Полная консультация по всем компонентам, таким как двигатель, коробка передач (трансмиссия), тормозная система, система гидроусилителя руля и система охлаждения.
  • Двигатель ТД 60 К

    Емкость: 15 литров

  • Дифференциал передний (4×4)

    Емкость: 8 литров

  • Ступичные редукторы передние (4×4)

    Емкость: 0,5 литра

  • Гидравлическая система

    Емкость: 25 литров

  • Быстрая передача

    Емкость: 13 литров

  • Коробка передач механическая 14/4

    Емкость: 95 литров

  • Гидравлическая тормозная система

  • Точки смазки/масленки

  • Точки смазки/масленки передние ступичные подшипники

  • Система охлаждения

    Емкость: 26 литров

 

 

Охлаждение для экстремальных условий — Муфты и тормоза с регулированием усилия с технологией масляного сдвига

Продление срока службы тормоза с муфтой для самых требовательных приложений

Тормоза сцепления Posidyne имеют 5 вариантов охлаждения для экстремальных условий

Тормоза сцепления и тормоза могут оказаться в экстремальных условиях эксплуатации.Грязные, пыльные, влажные, горячие, холодные, высокие инерционные нагрузки, высокая частота циклов или все в одном и том же месте применения. Как вы можете получить тормоз сцепления или тормоз, чтобы обеспечить достойное обслуживание? Для этого обсуждения давайте просто сконцентрируемся на трех проблемах: высокой скорости цикла, высоких инерционных нагрузках, высоких температурах. Общим знаменателем для всех трех решений, связанных со сцеплением или тормозом, является нагрев.

Во-первых, важно понимать, что сцепление или тормоз преобразуют энергию вращения в тепло. Поэтому каждый раз, когда включается сцепление или тормоз, выделяется тепло, которое необходимо отводить от фрикционных поверхностей.При включении сцепления примерно 1/3 энергии, поступающей к сцеплению, преобразуется в энергию вращения на выходе, остальная часть преобразуется в тепло. При торможении 100 % энергии вращения, поступающей в тормоз, преобразуется в тепло. Таким образом, чем больше энергии поступает на поверхности трения, тем больше тепла. Обратите внимание, что продукты Positorq обычно частично включаются в течение длительного периода времени и постоянно генерируют высокие уровни тепла.

Нагрев — один из самых больших врагов сцеплений и тормозов, вызывающий износ фрикционных дисков, деградацию, остекление, потерю крутящего момента, зависание или заедание и преждевременный выход из строя.Сухие фрикционные муфты и тормоза с трудом отводят тепло от поверхности трения, что вызывает проблему создания материалов с более высокой термостойкостью и минимальный успех при добавлении вентилятора или водяного охлаждения.

Тормоза сцепления Posidyne

Force Control, тормоза Posistop, тормоза MagnaShear и тормоза непрерывного проскальзывания Positorq оснащены технологией Oil Shear. Технология Oil Shear представляет собой систему непрерывной циркуляции трансмиссионной жидкости через фрикционный блок. Тонкая пленка жидкости между фрикционным диском и ведущим диском разделяет детали, уменьшая прямой механический контакт, в то время как трансмиссионная жидкость, сжатая между ними, передает крутящий момент посредством процесса, известного как технология сдвига масла или гидровязкая.

Добавить комментарий

Ваш адрес email не будет опубликован.